3,955 research outputs found

    The Application of Average Voltage Estimation Models in Simulation of Permanent Magnet AC Electric Motor and Generator Drive Systems

    Get PDF
    This paper explores the application, development and potential benefits of using Average Voltage Estimation techniques in Matlab/Simulink modelling of Permanent Magnet AC (PMAC) electric motor and generator drive systems. These models can include all elements of a multi-technology system; electrical circuits, power electronics, digital control, electro-magnetic machine, dynamic mechanical loads, and in the case of wind turbines also time varying aerodynamic subsystems. The paper compare the performance of an average voltage model against the standard switching converter approach for both PMAC motor and generator drives to ensure the accurate prediction of key operating parameters throughout the complete operating range. The result is that the averaging model performs well for both motor and generator systems but with the significant advantage of greatly accelerated simulation times thus making this technique attractive for system level modelling which also requires detailed modelling of mechanical and possibly aeronautical systems

    Development of fast multi-system simulation models for permanent magnet synchronous motor and generator drive systems

    Get PDF
    This research project investigates the development and validation of alternative simulation models for voltage source inverter fed permanent magnet synchronous machine drive systems which can rapidly and accurately analyse and evaluate the performance of PM machine drives and associated control system designs. Traditionally simulations have been conducted using switching models and state space average value methods. The simulation of switching models is time consuming and that of state space averaging involves complex mathematical transformation to d-q axis, with additional circuitry and this limits their application in a time critical design process. Even if the complex calculations of state space are overcome, the proposed model can still achieve better results. This thesis presents the development of fast multi system simulation models for permanent magnet synchronous motor and generator drive systems. The fast simulation model: Average Voltage Estimation Model (AVEM) was developed for two-level, three phase VSI-fed PMSM drive systems and two-level three phase full-scale back-back VSI incorporated in a PMSG wind energy conversion system. The method uses the principle of control strategy and switching function to derive the average phase voltage in one switching period and then uses the average voltages to drive piecewise-linear voltage sources across the terminals of the permanent magnet synchronous machine and three phase system. A voltage source inverter loss model was also developed and incorporated into the AVEM to simulate the drive system power flow and its performance evaluated. The average voltage estimation model is also used to estimate and simulate the energy output of the variable speed PMSG wind energy conversion system. Practical implementation of this technique is achieved using a DSP based controller and validation made through comparison of the DSP AVEM energy estimation method with calculated energy. The study also presents the development of detailed VSI switching models for a variable speed PMSM and a PMSG wind energy conversion system which serve as benchmarks for the proposed AVEM models. A detailed description of both models will be presented. Since models require a control strategy: these control strategies were also developed using the carrier-based sinusoidal (SPWM) and implemented with PI regulators. In the permanent magnet synchronous generator wind energy conversion system application, the SPWM is applied to control the speed of the generator side converter to track maximum power as wind speed varies using the developed passive MPPT control technique and controls the AC load side converter to maintained constant DC link voltage. The sinusoidal PWM control provides a simplified control suitable for the variable speed PMSM drive system and the PMSG wind energy conversion system. Lastly, this thesis presents a detailed development of an experimental test rig. The test rig is developed to provide flexibility for the validation and comparison of the results of both simulation models against real practical implementations for PMSM drive system and PMSG wind energy conversions system. Several simulation case studies were performed using the PORTUNUS simulation package to validate and analyse the steady state accuracy of the proposed average voltage estimation model and control system against the switching model. Experiments were also carried out to validate the results of the simulation models. The simulation models results are presented and compared with experimental results. Suitable steady state performance analysis of two-level, three phase voltage source inverter fed permanent magnet synchronous motor and two-level three phase full scale back-back voltage source inverter with permanent magnet synchronous generator drive simulation and experimental performance are also carried out. The results show good agreement of the proposed average voltage estimation model with the switching model and experimental data, and where necessary the reasons for differences are discussed. The simulation of the AVEM is approximately 50 times faster than the switching model. The limitation of the proposed model is also discussed; mainly it cannot be used for the study and analysis of the internal dynamics of the voltage source inverter. The results from the proposed modelling method utilising the average voltage estimation confirm that this method can be used as an alternative to the detailed switching model for fast simulation and steady state analysis of PM machine drive systems given the advantages of speed, simplicity and ease of implementation. Note that the proposed model is only used for steady state performance analysis; however, in future its application can be extended to transient analysis. In addition, the model is not about maximium power point tracking techniques but it can accommodate maximium power point tracking techniques. It should also be highlighted that exactly the same digital control block is used in both the switching and AVEM models thus allowing a true comparison of controller behaviour. The model developed in this research project has application beyond PMSM drive system and PMSG wind energy conversion system. It can be applied to modelling, simulation and control of other electrical machine drives such as induction machines, switched reluctance machines and three-phase VSI-fed systems

    Addendum of 2MW Wind Turbine to A Power with Directly-Driven Permanent Magnet Generation System

    Get PDF
    In recent years, wind turbine has become an acceptable alternative energy generation, because of the environmental and economic benefits. Notwithstanding more research works still need to be done to reduce wind turbine installation complexity, enhance profitability and reliability especially in developing countries like Nigeria. This paper presents the modeling and analysis of a 2MW variable-speed directly-driven permanent magnet synchronous generator (PMSG), Wind energy conversion system (WECS). The objective is to optimize the power captured from the wind, ensure optimum efficiency for power generation and reduce system hardware count. The mathematical model for the permanent magnet synchronous wind turbine and its power control algorithms are modified by removing the speed sensors. Further, enhancement was achieved by utilizing wind speed forecasts as the starting speed. A modified Field Orientation Control FOC and voltage orientation control VOC scheme were developed for the system using matlab Simulink CAD application. The Simulation results of the model for various changes in wind speed utilizing average wind speed data of Mmaku in Awgu local government area of Enugu state Nigeria. The developed system ability to ‘smoothen’ the power, voltage output and operates at the optimum coefficient of performance between the cut in speed of 3m/s and 12m/s without wind sensor is found to be promising, Key words: wind turbine, variable-speed, permanent magnet, synchronous generator, efficiency DOI: 10.7176/JETP/9-3-04 Publication date:March 31st 201

    Condition Monitoring System of Wind Turbine Generators

    Get PDF
    The development and implementation of the condition monitoring systems (CMS) play a significant role in overcoming the number of failures in the wind turbine generators that result from the harsh operation conditions, such as over temperature, particularly when turbines are deployed offshore. In order to increase the reliability of the wind energy industry, monitoring the operation conditions of wind generators is essential to detect the immediate faults rapidly and perform appropriate preventative maintenance. CMS helps to avoid failures, decrease the potential shutdowns while running, reduce the maintenance and operation costs and maintain wind turbines protected. The knowledge of wind turbine generators\u27 faults, such as stator and rotor inter-turn faults, is indispensable to perform the condition monitoring accurately, and assist with maintenance decision making. Many techniques are utilized to avoid the occurrence of failures in wind turbine generators. The majority of the previous techniques that are applied to monitor the wind generator conditions are based on electrical and mechanical concepts and theories. An advanced CMS can be implemented by using a variety of different techniques and methods to confirm the validity of the obtained electrical and mechanical condition monitoring algorithms. This thesis is focused on applying CMS on wind generators due to high temperature by contributing the statistical, thermal, mathematical, and reliability analyses, and mechanical concepts with the electrical methodology, instead of analyzing the electrical signal and frequencies trends only. The newly developed algorithms can be compared with previous condition monitoring methods, which use the electrical approach in order to establish their advantages and limitations. For example, the hazard reliability techniques of wind generators based on CMS are applied to develop a proper maintenance strategy, which aims to extend the system life-time and reduce the potential failures during operation due to high generator temperatures. In addition, the use of some advanced statistical techniques, such as regression models, is proposed to perform a CMS on wind generators. Further, the mechanical and thermal characteristics are employed to diagnose the faults that can occur in wind generators. The rate of change in the generator temperature with respect to the induced electrical torque; for instance is considered as an indicator to the occurrence of faults in the generators. The behavior of the driving torque of the rotating permanent magnet with respect to the permanent magnet temperature can also utilize to indicate the operation condition. The permanent magnet model describes the rotating permanent magnet condition during operation in the normal and abnormal situations. In this context, a set of partial differential equations is devolved for the characterization of the rotations of the permanent. Finally, heat transfer analysis and fluid mechanics methods are employed to develop a suitable CMS on the wind generators by analyzing the operation conditions of the generator\u27s heat exchanger. The proposed methods applied based on real data of different wind turbines, and the obtained results were very convincing

    Traction axial flux motor-generator for hybrid electric bus application

    Get PDF
    Tato dizertační práce se zabývá návrhem původního motor-generátoru s axiálním tokem a buzením permanetními magnety, zkonstruovaným specificky pro hybridní elektrický autobus. Návrhové zadání pro tento stroj přineslo požadavky, které vedly k této unikátní topologii tak, aby byl dosažen výkon, účinnost a rozměry stroje. Tato partikulární topologie motor-generátoru s axiálním tokem je výsledkem literární rešerše, kterou následoval výběr koncepce stroje s představeným návrhem jako výsledkem těchto procesů. Přístup k návrhu stroje s axiálním tokem sledoval „multi-fyzikální“ koncepci, která pracuje s návrhem elektromagnetickým, tepelným, mechanickým, včetně návrhu řízení, v jedné iteraci. Tím je v konečném návrhu zajištěna rovnováha mezi těmito inženýrskými disciplínami. Pro samotný návrh stroje byla vyvinuta sada výpočtových a analytických nástrojů, které byly podloženy metodou konečných prvků tak, aby samotný návrh stroje byl přesnější a spolehlivější. Modelování somtného elektrického stroje a celého pohonu poskytlo představu o výkonnosti a účinnosti celého subsytému v rozmanitých operačních podmínkách. Rovněž poukázal na optimizační potenciál pro návrh řízení subsystému ve smyslu maximalizace účinnosti celého pohonu. Bylo postaveno několik prototypů tohoto stroje, které prošly intensivním testováním jak na úrovni sybsytému, tak systému. Samotné výsledky testů jsou diskutovány a porovnány s analytickými výpočty parametrů stroje. Poznatky získané z prvního prototypu stroje pak sloužily k představení možností, jak zjednodušit výrobu a montáž stroje v příští generaci. Tato práce zaznamenává jednotlivé kroky během všech fází vývoje elektrického stroje s axiálním tokem, počínaje výběrem konceptu stroje, konče sumarizací zkušeností získaných z první generace prototypu tohoto stroje.This thesis deals with a design of a novel Axial-Flux Permanent Magnet Motor-Generator for a hybrid electric bus application. Thus, the design specification represents a set of requirements, which leads toward a concept of a unique topology meeting performance, efficiency and dimensional targets. The particular topology of the Axial-Flux Permanent Magnet Motor-Generator discussed in this work is an outcome of deep literature survey, followed by the concept selection stage with the layout of the machine as an outcome of this processes. The design approach behind this so-called Spoke Axial-Flux Machine follows an idea of multiphysics iterations, including electromagnetic, thermal, mechanical and controls design. Such a process behind the eventually proposed design ensured a right balance in between all of these engineering disciplines. A set of bespoke design and analysis tools was developed for that reason, and was backed up by extensive use of Finite-Element Analysis and Computational Fluid Dynamics. Therefore, the actual machine design gained higher level of confidence and fidelity. Modelling of the machine and its drive provided understanding of performance and efficiency of the whole subsystem at various operational conditions. Moreover, it has illustrated an optimization potential for the controls design, so that efficiency of the machine and power electronics might be maximized. Several prototypes of this machine have been built and passed through extensive testing both on the subsystem and system level. Actual test results are discussed, and compared to analytical predictions in terms of the machine's parameters. As a lesson learned from the first prototype of this machine, a set of redesign proposals aiming for simplification of manufacturing and assembly processes, are introduced. This work records steps behind all phases of development of the Axial Flux Machine from a basic idea as an outcome of concept selection stage, up to testing and wrap-up of experience gained from the first generation of the machine.

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications

    Multi-level-objective design optimization of permanent magnet synchronous wind generator and solar photovoltaic system for an urban environment application

    Get PDF
    This Ph.D. thesis illustrates a novel study on the analytical and numerical design optimization of radial-flux permanent magnet synchronous wind generators (PMSGs) for small power generation in an urban area, in which an outer rotor topology with a closed-slot stator is employed. The electromagnetic advantages of a double-layer fractional concentration non-overlapping winding configuration are discussed. The analytical behavior of a PMSG is studied in detail; especially for magnetic flux density distribution, time and space harmonics, flux linkages, back-EMF, cogging torque, torque, output power, efficiency, and iron losses computation. The electromagnetic behavior of PMSGs are evaluated when a number of various Halbach array magnetization topologies are presented to maximize the generator’s performance. In addition, the thermal behavior of the PMSG is improved using an innovative natural air-cooling system for rated speed and higher to decrease the machine’s heat mainly at the stator teeth. The analytical investigation is verified via 2-D and 3-D finite element analysis along with a good experimental agreement. Design optimization of electrical machines plays the deterministic role in performance improvements such as the magnetization pattern, output power, and efficiency maximization, as well as losses and material cost minimization. This dissertation proposes a novel multi-objective design optimization technique using a dual-level response surface methodology (D-RSM) and Booth’s algorithm (coupled to a memetic algorithm known as simulated annealing) to maximize the output power and minimize material cost through sizing optimization. Additionally, the efficiency maximization by D-RSM is investigated while the PMSG and drive system are on duty as the whole. It is shown that a better fit is available when utilizing modern design functions such as mixed-resolution central composite (MR-CCD) and mixed-resolution robust (MR-RD), due to controllable and uncontrollable design treatments, and also a Window-Zoom-in approach. The proposed design optimization was verified by an experimental investigation. Additionally, there are several novel studies on vibro-acoustic design optimization of the PMSGs with considering variable speed analysis and natural frequencies using two techniques to minimize the magnetic noise and vibrations. Photovoltaic system design optimization considered of 3-D modeling of an innovative application-oriented urban environment structure, a smart tree for small power generation. The horizon shading is modeled as a broken line superimposed onto the sun path diagram, which can hold any number of height/azimuth points in this original study. The horizon profile is designed for a specific location on the Barcelona coast in Spain and the meteorological data regarding the location of the project was also considered. Furthermore, the input weather data is observed and stored for the whole year (in 2016). These data include, ambient temperature, module’s temperature (open and closed circuits tests), and shading average rate. A novel Pareto-based 3-D analysis was used to identify complete and partial shading of the photovoltaic system. A significant parameter for a photovoltaic (PV) module operation is the nominal operating cell temperature (NOCT). In this research, a glass/glass module has been referenced to the environment based on IEC61215 via a closed-circuit and a resistive load to ensure the module operates at the maximum power point. The proposed technique in this comparative study attempts to minimize the losses in a certain area with improved output energy without compromising the overall efficiency of the system. A Maximum Power Point Track (MPPT) controller is enhanced by utilizing an advanced perturb & observe (P&O) algorithm to maintain the PV operating point at its maximum output under different temperatures and insolation. The most cost-effective design of the PV module is achieved via optimizing installation parameters such as tilt angle, pitch, and shading to improve the energy yield. The variation of un-replicated factorials using a Window-Zoom-in approach is examined to determine the parameter settings and to check the suitability of the design. An experimental investigation was carried out to verify the 3-D shading analysis and NOCT technique for an open-circuit and grid-connected PV module.Esta tesis muestra un novedoso estudio referente al diseño optimizado de forma analítica y numérica de un generador síncrono de imanes permanentes (PMSGs) para una aplicación de microgeneración eólica en un entorno urbano, donde se ha escogido una topología de rotor exterior con un estator de ranuras cerradas. Las ventajas electromagnéticas de los arrollamientos fraccionarios de doble capa, con bobinas concentradas se discuten ampliamente en la parte inicial del diseño del mismo, así como las características de distribución de la inducción, los armónicos espaciales y temporales, la fem generada, el par de cogging así como las características de salida (par, potencia generada, la eficiencia y la distribución y cálculo de las pérdidas en el hierro que son analizadas detalladamente) Posteriormente se evalúan diferentes configuraciones de estructuras de imanes con magnetización Halbach con el fin de maximizar las prestaciones del generador. Adicionalmente se analiza la distribución de temperaturas y su mejora mediante el uso de un novedoso diseño mediante el uso de ventilación natural para velocidades próximas a la nominal y superiores con el fin de disminuir la temperatura de la máquina, principalmente en el diente estatórico. El cálculo analítico se completa mediante simulaciones 2D y 3D utilizando el método de los elementos finitos así como mediante diversas experiencias que validan los modelos y aproximaciones realizadas. Posteriormente se desarrollan algoritmos de optimización aplicados a variables tales como el tipo de magnetización, la potencia de salida, la eficiencia así como la minimización de las pérdidas y el coste de los materiales empleados. En la tesis se proponen un nuevo diseño optimizado basado en una metodología multinivel usando la metodología de superficie de respuesta (D-RSM) y un algoritmo de Booth (maximizando la potencia de salida y minimizando el coste de material empleado) Adicionalmente se investiga la maximización de la eficiencia del generador trabajando conjuntamente con el circuito de salida acoplado. El algoritmo utilizado queda validado mediante la experimentación desarrollada conjuntamente con el mismo. Adicionalmente, se han realizado diversos estudios vibroacústicos trabajando a velocidad variable usando dos técnicas diferentes para reducir el ruido generado y las vibraciones producidas. Posteriormente se considera un sistema fotovoltaico orientado a aplicaciones urbanas que hemos llamado “Smart tree for small power generation” y que consiste en un poste con un generador eólico en la parte superior juntamente con uno o más paneles fotovoltaicos. Este sistema se ha modelado usando metodologías en 3D. Se ha considerado el efecto de las sombras proyectadas por los diversos elementos usando datos meteorológicos y de irradiación solar de la propia ciudad de Barcelona. Usando una metodología basada en un análisis 3D y Pareto se consigue identificar completamente el sistema fotovoltaico; para este sistema se considera la temperatura de la célula fotovoltaica y la carga conectada con el fin de generar un algoritmo de control que permita obtener el punto de trabajo de máxima potencia (MPPT) comprobándose posteriormente el funcionamiento del algoritmo para diversas situaciones de funcionamiento del sistemaLa tesis desenvolupa un nou estudi per al disseny optimitzat, analític i numèric, d’un generador síncron d’imants permanents (PMSGs) per a una aplicació de microgeneració eòlica en aplicacions urbanes, on s’ha escollit una configuració amb rotor exterior i estator amb ranures tancades. Es discuteixen de forma extensa els avantatges electromagnètics dels bobinats fraccionaris de doble capa així com les característiques resultats vers la distribució de les induccions, els harmònics espacials i temporals, la fem generada, el parell de cogging i les característiques de sortida (parell, potencia, eficiència i pèrdues) Tanmateix s’afegeix l’estudi de diferents estructures Halbach per als imants permanents a fi i efecte de maximitzar les característiques del generador. Tot seguit s’analitza la distribució de temperatures i la seva reducció mitjançant la utilització d’una nova metodologia basada en la ventilació natural. Els càlculs analítics es complementen mitjançant anàlisi en 2 i 3 dimensions utilitzant elements finits i diverses experiències que validen els models i aproximacions emprades. Una vegada fixada la geometria inicial es desenvolupen algoritmes d’optimització per a diverses variables (tipus de magnetització dels imants, potencia de sortida, eficiència, minimització de pèrdues i cost dels materials) La tesi planteja una optimització multinivell emprant la metodologia de superfície de resposta i un algoritme de Booth; a més, es realitza la optimització considerant el circuit de sortida. L’algoritme resta validat per la experimentació realitzada. Finalment, s’han considerat diversos estudis vibroacústic treballant a velocitat variable, emprant dues tècniques diferents per a reduir el soroll i les vibracions desenvolupades. Per a finalitzar l’estudi es considera un sistema format per una turbina eòlica instal·lada sobre un pal de llum autònom, els panells fotovoltaics corresponents i el sistema de càrrega. Per a modelitzar l’efecte de l’ombrejat s’ha emprat un model en 3D i les dades del temps i d’irradiació solar de la ciutat de Barcelona. El model s’ha identificat completament i s’ha generat un algoritme de control que considera, a més, l’efecte de la temperatura de la cèl·lula fotovoltaica y la càrrega connectada al sistema per tal d’aconseguir el seguiment del punt de màxima potenciaPostprint (published version

    Design of Outrunner Eectric Machines for Green Energy Applications

    Get PDF
    Interests in using rare-earth free motors such as switched reluctance motors (SRMs) for electric and hybrid electric vehicles (EV/HEVs) continue to gain popularity, owing to their low cost and robustness. Optimal design of an SRM, to meet specific characteristics for an application, should involve simultaneous optimization of the motor geometry and control in order to achieve the highest performance with the lowest cost. This dissertation firstly presents a constrained multi-objective optimization framework for design and control of a SRM based on a non-dominated sorting genetic algorithm II (NSGA-II). The proposed methodology optimizes SRM operation for high volume traction applications by considering multiple criteria including efficiency, average torque, and torque ripple. Several constraints are defined by the application considered, such as the motor stack length, minimum desired efficiency, etc. The outcome of this optimization includes an optimal geometry, outlining variables such as air gap length, rotor inner diameter, stator pole arc angle, etc as well as optimal turn-on and turn-off firing angles. Then the machine is manufactured according to the obtained optimal specifications. Finite element analysis (FEA) and experimental results are provided to validate the theoretical findings. A solution for exploring optimal firing angles of nonlinear current-controlled SRMs is proposed in order to minimize the torque ripple. Motor torque ripple for a certain electrical load requirement is minimized using a surrogate-based optimization of firing angles by adjusting the motor geometry, reference current, rotor speed and dc bus voltage. Surrogate-based optimization is facilitated via Neural Networks (NN) which are regression tools capable of learning complex multi-variate functions. Flux and torque of the nonlinear SRM is learned as a function of input parameters, and consequently the computation time of design, which is crucial in any micro controller unit, is expedited by replacing the look-up tables of flux and torque with the surrogate NN model. This dissertation then proposes a framework for the design and analysis of a coreless permanent magnet (PM) machine for a 100 kWh shaft-less high strength steel flywheel energy storage system (SHFES). The PM motor/generator is designed to meet the required specs in terms of torque-speed and power-speed characteristics given by the application. The design challenges of a motor/generator for this architecture include: the poor flux paths due to a large scale solid carbon steel rotor and zero-thermal convection of the airgap due to operation of the machine in vacuum. Magnetic flux in this architecture tends to be 3-D rather than constrained due to lack of core in the stator. In order to tackle these challenges, several other parameters such as a proper number of magnets and slots combination, number of turns in each coil, magnets with high saturated flux density and magnets size are carefully considered in the proposed design framework. Magnetic levitation allows the use of a coreless stator that is placed on a supporting structure. The proposed PM motor/generator comprehensive geometry, electromagnetic and mechanical dimensioning are followed by detailed 3-D FEA. The torque, power, and speed determined by the FEA electromagnetic analysis are met by the application design requirements and constraints for both the charging and discharging modes of operation. Finally, the motor/generator static thermal analysis is discussed in order to validate the proposed cooling system functionality

    Design and Dynamic Control of Heteropolar Inductor Machines

    Get PDF
    corecore