67 research outputs found

    DC railway power supply system reliability evaluation and optimal operation plan

    Get PDF
    With the continuous and rapid development of the economy and the acceleration of urbanisation, public transport in cities has entered a period of rapid development. Urban rail transit is characterised by high speed, large traffic volume, safety, reliability and punctuality, which are incomparable with those of other forms of public transport. The traction power supply system (TPSS) is an important part of an electrified railway, and its safety issues are increasingly prominent. Different from the substation in a general power system, the load of a TPSS has a great impact on the traction transformer; moreover, in order to ensure normal operation of the train in case of failure, the traction substation must be able to access a cross-district power supply, as it has a high demand for reliable operation. The safe and reliable operation of DC TPSSs is the basis of the whole urban railway transit system. Previous studies have investigated the reliability of the TPSS main electrical wiring system. However, the impact of traction load and the actual operation of trains on system reliability has not been considered when designing a DC railway power supply system. The purpose of the research for this thesis is to find an optimal system operation plan for urban railways, considering load characteristics. This thesis begins with a review of the main arrangements of DC railway power supply systems and the literature on railway reliability studies. A model of single train simulation and a power supply system is established in MATLAB. The developed simulator is then integrated with a TPSS reliability model to evaluate the energy and reliability performance of DC railway power systems. Based on the train traction load model and train schedule, a comprehensive method for evaluating a DC TPSS considering traction load is proposed. Through simulation of the actual operation of the train group, the system energy consumption and substation life loss generated under different train operation diagrams and schedules are compared to provide a reference for the reasonable design of the timetable. Taking the life loss and energy consumption of the whole TPSS as the objective function, a genetic algorithm is used to optimise the train speed, coasting velocity, station dwell time and headway to find the optimal operation strategy. This is illustrated with a case study of the Singapore East–West metro line. The study has addressed the following issues: development of a multi-train power simulator, evaluation of reliability performance, and finally the search for an optimal operation plan. The train running diagram and timetable are optimised jointly. This can help railway operators make decisions for an optimal operation plan and reduce the operation risk of the power system

    System energy optimisation strategies for DC railway traction power networks

    Get PDF
    Energy and environmental sustainability in transportation are becoming ever more important. In Europe, the transportation sector is responsible for about 32% of the final energy consumption. Electrified railway systems play an important role in contributing to the reduction of energy usage and C02_2 emissions compared with other transport modes. Previous studies have investigated train driving strategies for traction energy saving. However, few of them consider the overall system energy optimisation. This thesis analyses the energy consumption of urban systems with regenerating trains, including the energy supplied by substations, used in power transmission networks, consumed by monitoring trains, and regenerated by braking trains. This thesis proposes an approach to searching energy-efficient driving strategies with coasting controls. A Driver Advisory System is designed and implemented in a field test on Beijing Yizhuang Subway Line. The driver guided by the DAS achieves 16% of traction energy savings, compared with normal driving. This thesis also proposes an approach to global system energy consumption optimisation, based on a Monte Carlo Algorithm. The case study indicates that the substation energy is reduced by around 38.6% with the system optimised operations. The efficiency of using regenerative braking energy is improved to from 80.6 to 95.5%

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Onduleur quasi-Z-source pour un système de traction de véhicules électriques à sources multiples : contrôle et gestion

    Get PDF
    Abstract: Power electronics play a fundamental role and help to achieve the new goals of the automobiles in terms of energy economy and environment. The power electronic converters are the key elements which interface their power sources to the drivetrain of the electric vehicle (EV). They contribute to obtaining high efficiency and performance in power systems. However, traditional inverters such as voltage-source, current-source inverters and conventional two-stage inverters present some conceptual limitations. Consequently, many research efforts have been focused on developing new power electronic converters suitable for EVs application. In order to develop and enhance the performance of commercial multiple sources EV, this dissertation aims to select and to control the impedance source inverter and to provide management approaches for multiple sources EV traction system. A concise review of the main existing topologies of impedance source inverters has been presented. That enables to select QZSI (quasi-Z-source inverter) topology as promising architectures with better performance and reliability. The comparative study between the bidirectional conventional two-stage inverter and QZSI for EV applications has been presented. Furthermore, comparative study between different powertrain topologies regarding batteries aging index factors for an off-road EV has been explored. These studies permit to prove that QZSI topology represents a good candidate to be used in multi-source EV system. For improving the performance of QZSI applied to EVs, optimized fractional order PI (FOPI) controllers for QZSI is designed with the ant colony optimization algorithm (ACO-NM) to obtain more suitable aging performance index values for the battery. Moreover, this thesis proposes a hybrid energy storage system (HESS) for EVs to allow an efficient energy use of the battery for a longer distance coverage. Optimized FOPI controller and the finite control set model predictive controller (FCS-MPC) for HESS using bidirectional QZSI is applied for the multi-source EV. The flux-weakening controller has been designed to provide a correct operation with the maximum available torque at any speed within current and voltage limits. Simulation investigations are performed to verify the topologies studied and the efficacity of the proposed controller structure with the bidirectional QZSI. Furthermore, Opal-RT-based real-time simulation has been implemented to validate the effectiveness of the proposed HESS control strategy. The results confirm the EV performance enhancement with the addition of supercapacitors using the proposed control configuration, allowing the efficient use of battery energy with the reduction of root-mean-square value, the mean value, and the standard deviation by 57%, 59%, and 27%, respectively, of battery current compared to the battery-only based inverter.L'électronique de puissance joue un rôle fondamental et contribue à atteindre les nouveaux objectifs de l'automobile en termes d'économie d'énergie et d'environnement. Les convertisseurs d’électroniques de puissance sont considérés comme les éléments clés qui interfacent leurs sources d'alimentation avec la chaîne de traction du véhicule électrique (VE). Ils contribuent à obtenir une efficacité et des performances élevées dans les systèmes électriques. Cependant, les onduleurs traditionnels tels que les onduleurs à source de tension, les onduleurs à source de courant et les onduleurs conventionnels à deux étages qui constituent les onduleurs les plus couramment utilisés, présentent certaines limitations conceptuelles. Par conséquent, de nombreux efforts de recherche se sont concentrés sur le développement de nouveaux convertisseurs d’électroniques de puissance adaptés à l'application aux véhicules électriques. Afin de développer et d'améliorer les performances des VEs à sources multiples commerciales, cette thèse vise à sélectionner, contrôler l'onduleur à source impédante et fournit une approche de gestion pour l'application du système de traction du VE à sources multiples. Une revue concise des principales topologies existantes d'onduleur à source impédante a été présentée. Cela a permis de sélectionner la topologie de l’onduleur quasi-Z-source (QZS) comme architectures prometteuses pouvant être utilisées dans les véhicules électriques, avec de meilleures performances et de fiabilité. L'étude comparative entre l'onduleur bidirectionnel conventionnel à deux étages et de celui à QZS pour les applications du VE a été présentée. En outre, une étude comparative entre différentes topologies de groupes motopropulseurs concernant les facteurs d'indice de vieillissement des batteries pour une application du VE hors route a été explorée. Ces études ont permis de prouver que la topologie de l’onduleur QZS représente une bonne topologie candidate à utiliser dans un système de VE à sources multiples. Pour améliorer les performances de l’onduleur QZS appliquées aux véhicules électriques, des contrôleurs PI d'ordre fractionnaire (PIOF) optimisés pour l’onduleur QZS sont conçus avec l'algorithme de colonies de fourmis afin d'obtenir des valeurs d'indice de performance de vieillissement plus appropriées pour la batterie. De plus, cette thèse propose un système de stockage d'énergie hybride (SSEH) pour le VE afin de permettre une utilisation efficace de l'énergie de la batterie pour une couverture de distance plus longue et une extension de son autonomie. L’optimisation du contrôleur PIOF et du contrôleur par modèle prédictif d'ensemble de contrôle fini (CMP-ECF) pour l’onduleur QZS bidirectionnel a été appliqué au VE à sources multiples avec des approches de gestion appuyées par des règles. Le contrôleur d'affaiblissement de flux magnétique du moteur a été conçu pour fournir un fonctionnement correct avec le couple maximal disponible à n'importe quelle vitesse dans les limites de courant et de tension. Des investigations et des simulations sont effectuées pour vérifier les différentes topologies étudiées et l'efficacité de la structure de contrôleur proposée avec l’onduleur QZS bidirectionnel. De plus, une simulation en temps réel basée sur Opal-RT a été mise en œuvre pour valider l'efficacité de la stratégie de contrôle SSEH proposée. Les résultats confirment l'amélioration des performances du VE avec l'ajout d'un supercondensateur utilisant la configuration du contrôle proposée, permettant une utilisation efficace de l'énergie de la batterie avec une réduction de la valeur moyenne quadratique, de la valeur moyenne et de l'écart type de 57%, 59% et 27%, respectivement, du courant de la batterie par rapport à l'onduleur connecté directement à la batterie

    Optimum Distribution System Architectures for Efficient Operation of Hybrid AC/DC Power Systems Involving Energy Storage and Pulsed Loads

    Get PDF
    After more than a century of the ultimate dominance of AC in distribution systems, DC distribution is being re-considered. However, the advantages of AC systems cannot be omitted. This is mainly due to the cheap and efficient means of generation provided by the synchronous AC machines and voltage stepping up/down allowed by the AC transformers. As an intermediate solution, hybrid AC/DC distribution systems or microgrids are proposed. This hybridization of distribution systems, incorporation of heterogeneous mix of energy sources, and introducing Pulsed Power Loads (PPL) together add more complications and challenges to the design problem of distribution systems. In this dissertation, a comprehensive multi-objective optimization approach is presented to determine the optimal design of the AC/DC distribution system architecture. The mathematical formulation of a multi-objective optimal power flow problem based on the sequential power flow method and the Pareto concept is developed and discussed. The outcome of this approach is to answer the following questions: 1) the optimal size and location of energy storage (ES) in the AC/DC distribution system, 2) optimal location of the PPLs, 3) optimal point of common coupling (PCC) between the AC and DC sides of the network, and 4) optimal network connectivity. These parameters are to be optimized to design a distribution architecture that supplies the PPLs, while fulfilling the safe operation constraints and the related standard limitations. The optimization problem is NP-hard, mixed integer and combinatorial with nonlinear constraints. Four objectives are involved in the problem: minimizing the voltage deviation (ΔV), minimizing frequency deviation (Δf), minimizing the active power losses in the distribution system and minimizing the energy storage weight. The last objective is considered in the context of ship power systems, where the equipment’s weight and size are restricted. The utilization of Hybrid Energy Storage Systems (HESS) in PPL applications is investigated. The design, hardware implementation and performance evaluation of an advanced – low cost Modular Energy Storage regulator (MESR) to efficiently integrate ES to the DC bus are depicted. MESR provides a set of unique features: 1) It is capable of controlling each individual unit within a series/parallel array (i.e. each single unit can be treated, controlled and monitored separately from the others), 2) It is able to charge some units within an ES array while other units continue to serve the load, 3) Balance the SoC without the need for power electronic converters, and 4) It is able to electrically disconnect a unit and allow the operator to perform the required maintenance or replacement without affecting the performance of the whole array. A low speed flywheel Energy Storage System (FESS) is designed and implemented to be used as an energy reservoir in PPL applications. The system was based on a separately excited DC machine and a bi-directional Buck-Boost converter as the driver to control the charging/discharging of the flywheel. Stable control loops were designed to charge the FESS off the pulse and discharge on the pulse. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed

    Control of Energy Storage

    Get PDF
    Energy storage can provide numerous beneficial services and cost savings within the electricity grid, especially when facing future challenges like renewable and electric vehicle (EV) integration. Public bodies, private companies and individuals are deploying storage facilities for several purposes, including arbitrage, grid support, renewable generation, and demand-side management. Storage deployment can therefore yield benefits like reduced frequency fluctuation, better asset utilisation and more predictable power profiles. Such uses of energy storage can reduce the cost of energy, reduce the strain on the grid, reduce the environmental impact of energy use, and prepare the network for future challenges. This Special Issue of Energies explore the latest developments in the control of energy storage in support of the wider energy network, and focus on the control of storage rather than the storage technology itself

    Performance Enhancement of Shunt APFs Using Various Topologies, Control Schemes and Optimization Techniques

    Get PDF
    Following the advent of solid-state power electronics technology, extensive usage of nonlinear loads has lead to severe disturbances like harmonics, unbalanced currents, excessive neutral current and reactive power burden in three-phase power systems. Harmonics lower down the efficiency and power factor, increase losses, and result in electromagnetic interference with neighbouring communication lines and other harmful consequences. Over the years, active power filter (APF) has been proven to be a brilliant solution among researchers and application engineers dealing with power quality issues. Selection of proper reference compensation current extraction scheme plays the most crucial role in APF performance. This thesis describes three time-domain schemes viz. Instantaneous active and reactive power (p-q), modified p-q, and Instantaneous active and reactive current component (i_d-i_q) schemes. The objective is to bring down the source current THD below 5%, to satisfy the IEEE-519 Standard recommendations on harmonic limits. Comparative evaluation shows that, i_d-i_q is the best APF control scheme irrespective of supply and load conditions. Results are validated with simulations, followed by real-time analysis in RT-Lab.In view of the fact that APFs are generally comprised of voltage source inverter (VSI) based on PWM, undesirable power loss takes place inside it due to the inductors and switching devices. This is effectively minimized with inverter DC-link voltage regulation using PI controller. The controller gains are determined using optimization technique, as the conventional linearized tuning of PI controller yield inadequate results for a range of operating conditions due to the complex, nonlinear and time-varying nature of power system networks. Developed by hybridization of Particle swarm optimization (PSO) and Bacterial foraging optimization (BFO), an Enhanced BFO technique is proposed here so as to overcome the drawbacks of both PSO and BFO, and accelerate the convergence of optimization problem. Extensive simulation studies and RT-Lab real-time investigations are performed for comparative assessment of proposed implementation of PSO, BFO and Enhanced BFO on APF. This validates that, the APF employing Enhanced BFO offers superior harmonic compensation compared to other alternatives, by lowering down the source current THD to drastically small values.Another indispensable aspect of APF is its topology, which plays an essential role in meeting harmonic current requirement of nonlinear loads. APFs are generally developed with current-source or voltage-source inverters. The latter is more convenient as it is lighter, cheaper, and expandable to multilevel and multistep versions for improved performance at high power ratings with lower switching frequencies. There can be different topologies of VSI depending on the type of supply system. With each topology, constraints related to DC-link voltage regulation change. For effective compensation, irrespective of the number and rating of DC-link capacitors used in any particular topology, voltages across them must be maintained constant with optimal regulation of DC-link voltage. Various topologies for three-phase three-wire systems (conventional two-level and multilevel VSIs) and four-wire systems (split-capacitor (2C), four-leg (4L), three H-bridges (3HB) and three-level H-bridge (3L-HB) VSIs) are analyzed and compared based on component requirements, effectiveness in harmonic compensation, cost and area of application

    Power Electronic Converter Configuration and Control for DC Microgrid Systems

    Get PDF
    corecore