4,197 research outputs found

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Manipulating Attributes of Natural Scenes via Hallucination

    Full text link
    In this study, we explore building a two-stage framework for enabling users to directly manipulate high-level attributes of a natural scene. The key to our approach is a deep generative network which can hallucinate images of a scene as if they were taken at a different season (e.g. during winter), weather condition (e.g. in a cloudy day) or time of the day (e.g. at sunset). Once the scene is hallucinated with the given attributes, the corresponding look is then transferred to the input image while preserving the semantic details intact, giving a photo-realistic manipulation result. As the proposed framework hallucinates what the scene will look like, it does not require any reference style image as commonly utilized in most of the appearance or style transfer approaches. Moreover, it allows to simultaneously manipulate a given scene according to a diverse set of transient attributes within a single model, eliminating the need of training multiple networks per each translation task. Our comprehensive set of qualitative and quantitative results demonstrate the effectiveness of our approach against the competing methods.Comment: Accepted for publication in ACM Transactions on Graphic

    An AI-Horticulture Monitoring and Prediction System with Automatic Object Counting

    Get PDF
    Estimating density maps and counting the number of objects of interest from images has a wide range of applications, such as crowd counting, traffic monitoring, cell microscopy in biomedical imaging, plant counting in agronomy, as well as environmental survey. Manual counting is a labor-intensive and time-consuming process. Over the past few years, the topic of automatic object counting by computers has been actively evolving from the classic machine learning methods based on handcrafted image features to end-to-end deep learning methods using data-driven feature engineering, for example by Convolutional Neural Networks (CNNs). In our research, we focus on the task of counting plants for large-scale nursery farms to build an AI-horticulture monitoring and prediction system using unmanned aerial vehicle (UAV) images. The common challenges of automatic object counting as other computer vision tasks are scenario difference, object occlusion, scale variation of views, non-uniform distribution, and perspective difference. For an AI-horticulture monitoring and prediction system for large-scale analysis, the plant species various a lot, so that the image features are different based on different appearance of species. In order to solve these complex problems, the deep convolutional neural network-based approaches are proposed. Our method uses the density map as the ground truth to train the modified classic deep neural networks for object counting regression. Experiments are conducted comparing our proposed models with the state-of-the-art object counting and density estimation approaches. The results demonstrate that our proposed counting model outperforms state-of-the-art approaches by achieving the best counting performance with a mean absolute error of 1.93 and a mean square error of 2.68 on our horticulture nursery plant dataset
    corecore