1,134 research outputs found

    Solving a "Hard" Problem to Approximate an "Easy" One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems

    Get PDF
    We consider geometric instances of the Maximum Weighted Matching Problem (MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000 vertices. Making use of a geometric duality relationship between MWMP, MTSP, and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields in near-linear time solutions as well as upper bounds. Using various computational tools, we get solutions within considerably less than 1% of the optimum. An interesting feature of our approach is that, even though an FWP is hard to compute in theory and Edmonds' algorithm for maximum weighted matching yields a polynomial solution for the MWMP, the practical behavior is just the opposite, and we can solve the FWP with high accuracy in order to find a good heuristic solution for the MWMP.Comment: 20 pages, 14 figures, Latex, to appear in Journal of Experimental Algorithms, 200

    An Optimal Control Theory for the Traveling Salesman Problem and Its Variants

    Get PDF
    We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formulation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous-time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continuity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the proposed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained practical problems.Comment: 24 pages, 8 figure

    The Quadratic Cycle Cover Problem: special cases and efficient bounds

    Get PDF
    The quadratic cycle cover problem is the problem of finding a set of node-disjoint cycles visiting all the nodes such that the total sum of interaction costs between consecutive arcs is minimized. In this paper we study the linearization problem for the quadratic cycle cover problem and related lower bounds. In particular, we derive various sufficient conditions for the quadratic cost matrix to be linearizable, and use these conditions to compute bounds. We also show how to use a sufficient condition for linearizability within an iterative bounding procedure. In each step, our algorithm computes the best equivalent representation of the quadratic cost matrix and its optimal linearizable matrix with respect to the given sufficient condition for linearizability. Further, we show that the classical Gilmore-Lawler type bound belongs to the family of linearization based bounds, and therefore apply the above mentioned iterative reformulation technique. We also prove that the linearization vectors resulting from this iterative approach satisfy the constant value property. The best among here introduced bounds outperform existing lower bounds when taking both quality and efficiency into account

    Non-Abelian Analogs of Lattice Rounding

    Full text link
    Lattice rounding in Euclidean space can be viewed as finding the nearest point in the orbit of an action by a discrete group, relative to the norm inherited from the ambient space. Using this point of view, we initiate the study of non-abelian analogs of lattice rounding involving matrix groups. In one direction, we give an algorithm for solving a normed word problem when the inputs are random products over a basis set, and give theoretical justification for its success. In another direction, we prove a general inapproximability result which essentially rules out strong approximation algorithms (i.e., whose approximation factors depend only on dimension) analogous to LLL in the general case.Comment: 30 page

    Restricted Dynamic Programming Heuristic for Precedence Constrained Bottleneck Generalized TSP

    Full text link
    We develop a restricted dynamical programming heuristic for a complicated traveling salesman problem: a) cities are grouped into clusters, resp. Generalized TSP; b) precedence constraints are imposed on the order of visiting the clusters, resp. Precedence Constrained TSP; c) the costs of moving to the next cluster and doing the required job inside one are aggregated in a minimax manner, resp. Bottleneck TSP; d) all the costs may depend on the sequence of previously visited clusters, resp. Sequence-Dependent TSP or Time Dependent TSP. Such multiplicity of constraints complicates the use of mixed integer-linear programming, while dynamic programming (DP) benefits from them; the latter may be supplemented with a branch-and-bound strategy, which necessitates a “DP-compliant” heuristic. The proposed heuristic always yields a feasible solution, which is not always the case with heuristics, and its precision may be tuned until it becomes the exact DP

    Playing Billiard in Version Space

    Full text link
    A ray-tracing method inspired by ergodic billiards is used to estimate the theoretically best decision rule for a set of linear separable examples. While the Bayes-optimum requires a majority decision over all Perceptrons separating the example set, the problem considered here corresponds to finding the single Perceptron with best average generalization probability. For randomly distributed examples the billiard estimate agrees with known analytic results. In real-life classification problems the generalization error is consistently reduced compared to the maximal stability Perceptron.Comment: uuencoded, gzipped PostScript file, 127576 bytes To recover 1) save file as bayes.uue. Then 2) uudecode bayes.uue and 3) gunzip bayes.ps.g
    corecore