417 research outputs found

    Edge Computing for Internet of Things

    Get PDF
    The Internet-of-Things is becoming an established technology, with devices being deployed in homes, workplaces, and public areas at an increasingly rapid rate. IoT devices are the core technology of smart-homes, smart-cities, intelligent transport systems, and promise to optimise travel, reduce energy usage and improve quality of life. With the IoT prevalence, the problem of how to manage the vast volumes of data, wide variety and type of data generated, and erratic generation patterns is becoming increasingly clear and challenging. This Special Issue focuses on solving this problem through the use of edge computing. Edge computing offers a solution to managing IoT data through the processing of IoT data close to the location where the data is being generated. Edge computing allows computation to be performed locally, thus reducing the volume of data that needs to be transmitted to remote data centres and Cloud storage. It also allows decisions to be made locally without having to wait for Cloud servers to respond

    Resource allocation for fog computing based on software-defined networks

    Get PDF
    With the emergence of cloud computing as a processing backbone for internet of thing (IoT), fog computing has been proposed as a solution for delay-sensitive applications. According to fog computing, this is done by placing computing servers near IoT. IoT networks are inherently very dynamic, and their topology and resources may be changed drastically in a short period. So, using the traditional networking paradigm to build their communication backbone, may lower network performance and higher network configuration convergence latency. So, it seems to be more beneficial to employ a software-defined network paradigm to implement their communication network. In software-defined networking (SDN), separating the network’s control and data forwarding plane makes it possible to manage the network in a centralized way. Managing a network using a centralized controller can make it more flexible and agile in response to any possible network topology and state changes. This paper presents a software-defined fog platform to host real-time applications in IoT. The effectiveness of the mechanism has been evaluated by conducting a series of simulations. The results of the simulations show that the proposed mechanism is able to find near to optimal solutions in a very lower execution time compared to the brute force method

    Edge/Fog Computing Technologies for IoT Infrastructure

    Get PDF
    The prevalence of smart devices and cloud computing has led to an explosion in the amount of data generated by IoT devices. Moreover, emerging IoT applications, such as augmented and virtual reality (AR/VR), intelligent transportation systems, and smart factories require ultra-low latency for data communication and processing. Fog/edge computing is a new computing paradigm where fully distributed fog/edge nodes located nearby end devices provide computing resources. By analyzing, filtering, and processing at local fog/edge resources instead of transferring tremendous data to the centralized cloud servers, fog/edge computing can reduce the processing delay and network traffic significantly. With these advantages, fog/edge computing is expected to be one of the key enabling technologies for building the IoT infrastructure. Aiming to explore the recent research and development on fog/edge computing technologies for building an IoT infrastructure, this book collected 10 articles. The selected articles cover diverse topics such as resource management, service provisioning, task offloading and scheduling, container orchestration, and security on edge/fog computing infrastructure, which can help to grasp recent trends, as well as state-of-the-art algorithms of fog/edge computing technologies
    • …
    corecore