5,724 research outputs found

    Biometrics-as-a-Service: A Framework to Promote Innovative Biometric Recognition in the Cloud

    Full text link
    Biometric recognition, or simply biometrics, is the use of biological attributes such as face, fingerprints or iris in order to recognize an individual in an automated manner. A key application of biometrics is authentication; i.e., using said biological attributes to provide access by verifying the claimed identity of an individual. This paper presents a framework for Biometrics-as-a-Service (BaaS) that performs biometric matching operations in the cloud, while relying on simple and ubiquitous consumer devices such as smartphones. Further, the framework promotes innovation by providing interfaces for a plurality of software developers to upload their matching algorithms to the cloud. When a biometric authentication request is submitted, the system uses a criteria to automatically select an appropriate matching algorithm. Every time a particular algorithm is selected, the corresponding developer is rendered a micropayment. This creates an innovative and competitive ecosystem that benefits both software developers and the consumers. As a case study, we have implemented the following: (a) an ocular recognition system using a mobile web interface providing user access to a biometric authentication service, and (b) a Linux-based virtual machine environment used by software developers for algorithm development and submission

    Comparing the legendre wavelet filter and the gabor wavelet filter for feature extraction based on iris recognition system

    Get PDF
    Iris recognition system is today among the most reliable form of biometric recognition. Some of the reasons why the iris recognition system is reliable include; Iris never changes due to ageing and individual can be recognized with their irises from long distances up to 50m away. The iris recognition system process includes four main steps. The four main steps are; iris image acquisition, preprocessing, feature extraction and matching, which makes the processes in recognizing an individual with his or her iris. However, most researchers recognized feature extraction as a critical stage in the recognition process. The stage is tasked with extracting unique feature of the individual to be recognized. Different algorithm over two-decade has been proposed to extract features from the iris. This research considered the Gabor filter, which is one of the most used and Legendre wavelet filters. We also apply them on three different datasets; CASIA, UBIRIS and MMU databases. Then we evaluate and compare based on the False Acceptance Rate (FAR), False Rejection Rate (FRR), Genuine Acceptance Rate (GAR) and their accuracy. The result shows a significate increase in recognition accuracy of the Legendre wavelet filter against the Gabor filter with up to 5.4% difference when applied with the UBIRIS database

    An Improved Algorithm for Eye Corner Detection

    Full text link
    In this paper, a modified algorithm for the detection of nasal and temporal eye corners is presented. The algorithm is a modification of the Santos and Proenka Method. In the first step, we detect the face and the eyes using classifiers based on Haar-like features. We then segment out the sclera, from the detected eye region. From the segmented sclera, we segment out an approximate eyelid contour. Eye corner candidates are obtained using Harris and Stephens corner detector. We introduce a post-pruning of the Eye corner candidates to locate the eye corners, finally. The algorithm has been tested on Yale, JAFFE databases as well as our created database

    Evaluating the impact of image preprocessing on iris segmentation

    Get PDF
    La segmentación del iris es una de las etapas más importantes en los sistemas de reconocimiento del iris. En este trabajo se aplican algoritmos de preprocesamiento de la imagen con el objetivo de evaluar su impacto en los porcentajes de segmentación exitosa del iris. Los algoritmos utilizados se basan en el ajuste del histograma, filtros Gaussianos y en la eliminación del reflejo especular en imágenes del ojo humano. Se aplica el método de segmentación introducido por Masek a 199 imágenes tomadas bajo condiciones no controladas, pertenecientes a la base de datos CASIA-irisV3, antes y después de aplicar los algoritmos de preprocesamiento. Posteriormente se evalúa el impacto de los algoritmos de preprocesamiento en el porcentaje de segmentación exitosa del iris por medio de una inspección visual de las imágenes, para determinar si las circunferencias detectadas del iris y de la pupila corresponden adecuadamente con el iris y la pupila de la imagen real. El algoritmo que generó uno de los mayores incrementos de los porcentajes de segmentación exitosa (pasa de 59% a 73%) es aquel que combina la eliminación de reflejos especulares, seguido por la aplicación de un filtro Gaussiano con máscara 5x5. Los resultados obtenidos señalan la importancia de una etapa previa de preprocesamiento de la imagen como paso previo para garantizar una mayor efectividad en el proceso de detección de bordes y segmentación del iris.Segmentation is one of the most important stages in iris recognition systems. In this paper, image preprocessing algorithms are applied in order to evaluate their impact on successful iris segmentation. The preprocessing algorithms are based on histogram adjustment, Gaussian filters and suppression of specular reflections in human eye images. The segmentation method introduced by Masek is applied on 199 images acquired under unconstrained conditions, belonging to the CASIA-irisV3 database, before and after applying the preprocessing algorithms. Then, the impact of image preprocessing algorithms on the percentage of successful iris segmentation is evaluated by means of a visual inspection of images in order to determine if circumferences of iris and pupil were detected correctly. An increase from 59% to 73% in percentage of successful iris segmentation is obtained with an algorithm that combine elimination of specular reflections, followed by the implementation of a Gaussian filter having a 5x5 kernel. The results highlight the importance of a preprocessing stage as a previous step in order to improve the performance during the edge detection and iris segmentation processes
    corecore