1,423 research outputs found

    Service discovery using Bloom filters

    Get PDF
    A protocol to perform service discovery in adhoc networks is introduced in this paper. Attenuated Bloom filters are used to distribute services to nodes in the neighborhood and thus enable local service discovery. The protocol has been implemented in a discrete event simulator to investigate the behavior in case of a multihop mobile ad-hoc network with nodes that all have services to offer. Methods to optimize the used bandwidth, which is a scarce resource in wireless networks, are investigated. Experiments performed with the simulator suggest that the proposed service discovery system enables users to find local services in a multihop ad-hoc network efficiently. The costs for advertising can be kept low, whereas the additional costs for queries set due to so-called false positives are moderate

    Deploying rural community wireless mesh networks

    Get PDF
    Inadequate Internet access is widening the digital divide between town and countryside, degrading both social communication and business advancements in rural areas. Wireless mesh networking can provide an excellent framework for delivering broadband services to such areas. With this in mind, Lancaster University deployed a WMN in the rural village of Wray over a three-year period, providing the community with Internet service that exceeds many urban offerings. The project gave researchers a real-world testbed for exploring the technical and social issues entailed in deploying WMNs in the heart of a small community

    On Bioelectric Algorithms

    Get PDF
    Cellular bioelectricity describes the biological phenomenon in which cells in living tissue generate and maintain patterns of voltage gradients across their membranes induced by differing concentrations of charged ions. A growing body of research suggests that bioelectric patterns represent an ancient system that plays a key role in guiding many important developmental processes including tissue regeneration, tumor suppression, and embryogenesis. This paper applies techniques from distributed algorithm theory to help better understand how cells work together to form these patterns. To do so, we present the cellular bioelectric model (CBM), a new computational model that captures the primary capabilities and constraints of bioelectric interactions between cells and their environment. We use this model to investigate several important topics from the relevant biology research literature. We begin with symmetry breaking, analyzing a simple cell definition that when combined in single hop or multihop topologies, efficiently solves leader election and the maximal independent set problem, respectively - indicating that these classical symmetry breaking tasks are well-matched to bioelectric mechanisms. We then turn our attention to the information processing ability of bioelectric cells, exploring upper and lower bounds for approximate solutions to threshold and majority detection, and then proving that these systems are in fact Turing complete - resolving an open question about the computational power of bioelectric interactions
    corecore