38,903 research outputs found

    An improved spatiogram similarity measure for robust object localisation

    Get PDF
    Spatiograms were introduced as a generalisation of the commonly used histogram, providing the flexibility of adding spatial context information to the feature distribution information of a histogram. The originally proposed spatiogram comparison measure has significant disadvantages that we detail here. We propose an improved measure based on deriving the Bhattacharyya coefficient for an infinite number of spatial-feature bins. Its advantages over the previous measure and over histogram-based matching are demonstrated in object tracking scenarios

    The Star Formation Rate Intensity Distribution Function -- Comparison of Observations with Hierarchical Galaxy Formation

    Get PDF
    Recently, Lanzetta et al. (2002) have measured the distribution of star formation rate intensity in galaxies at various redshifts. This data set has a number of advantages relative to galaxy luminosity functions; the effect of surface-brightness dimming on the selection function is simpler to understand, and this data set also probes the size distribution of galactic disks. We predict this function using semi-analytic models of hierarchical galaxy formation in a LCDM cosmology. We show that the basic trends found in the data follow naturally from the redshift evolution of dark matter halos. The data are consistent with a constant efficiency of turning gas into stars in galaxies, with a best-fit value of 2%, where dust obscuration is neglected; equivalently, the data are consistent with a cosmic star formation rate which is constant to within a factor of two at all redshifts above two. However, the practical ability to use this kind of distribution to measure the total cosmic star formation rate is limited by the predicted shape of an approximate power law with a smoothly varying power, without a sharp break.Comment: 17 pages, 4 figures, published in New Astronom

    Fast MTF measurement of CMOS imagers at the chip level using ISO 12233 slanted-edge methodology

    Get PDF
    MTF measurement methods for imaging devices usually require the use of an optical system to project the image of the object onto the detector. So, MTF results quality strongly depends on the accuracy of the optical adjustments (alignments, focusing…). Dedicated edge patterns have been implemented at the chip level on a CMOS imager. One of them emulates the target used in the ISO 12233 slanted-edge technique and the others one are inspired by the knife-edge method. This allows to get the MTF data without optical focusing. In order to validate the results, comparisons have been made between MTF measurements using these patterns and results obtained through direct measurements with the transmissive slanted-edge target and sine target

    The application of a Trous wave filtering and Monte Carlo analysis on SECIS 2001 solar eclipse observations

    Full text link
    8000 images of the Solar corona were captured during the June 2001 total Solar eclipse. New software for the alignment of the images and an automated technique for detecting intensity oscillations using multi scale wavelet analysis were developed. Large areas of the images covered by the Moon and the upper corona were scanned for oscillations and the statistical properties of the atmospheric effects were determined. The a Trous wavelet transform was used for noise reduction and Monte Carlo analysis as a significance test of the detections. The effectiveness of those techniques is discussed in detail.Comment: 17 pages, 8 figures, accepted by Solar Physics Journal for publication in Topical Issue: "Frontiers in Solar Image Processing

    Depth Fields: Extending Light Field Techniques to Time-of-Flight Imaging

    Full text link
    A variety of techniques such as light field, structured illumination, and time-of-flight (TOF) are commonly used for depth acquisition in consumer imaging, robotics and many other applications. Unfortunately, each technique suffers from its individual limitations preventing robust depth sensing. In this paper, we explore the strengths and weaknesses of combining light field and time-of-flight imaging, particularly the feasibility of an on-chip implementation as a single hybrid depth sensor. We refer to this combination as depth field imaging. Depth fields combine light field advantages such as synthetic aperture refocusing with TOF imaging advantages such as high depth resolution and coded signal processing to resolve multipath interference. We show applications including synthesizing virtual apertures for TOF imaging, improved depth mapping through partial and scattering occluders, and single frequency TOF phase unwrapping. Utilizing space, angle, and temporal coding, depth fields can improve depth sensing in the wild and generate new insights into the dimensions of light's plenoptic function.Comment: 9 pages, 8 figures, Accepted to 3DV 201
    • …
    corecore