2 research outputs found

    Differential quadrature method (DQM) and Boubaker Polynomials Expansion Scheme (BPES) for efficient computation of the eigenvalues of fourth-order Sturm-Liouville problems

    Get PDF
    The differential quadrature method (DQM) and the Boubaker Polynomials Expansion Scheme (BPES) are applied in order to compute the eigenvalues of some regular fourth-order Sturm-Liouville problems. Generally, these problems include fourth-order ordinary differential equations together with four boundary conditions which are specified at two boundary points. These problems concern mainly applied-physics models like the steady-state Euler-Bernoulli beam equation and mechanicals non-linear systems identification. The approach of directly substituting the boundary conditions into the discrete governing equations is used in order to implement these boundary conditions within DQM calculations. It is demonstrated through numerical examples that accurate results for the first kth eigenvalues of the problem, where k= 1,. 2,. 3,. .... , can be obtained by using minimally 2(k+. 4) mesh points in the computational domain. The results of this work are then compared with some relevant studies. © 2011 Elsevier Inc
    corecore