80,253 research outputs found

    Functionally gradient tissue scaffold design and deposition path planning for bio-additive processes

    Get PDF
    A layer-based tissue scaffold is designed with heterogeneous internal architecture. The proposed layer-based design uses a bi-layer pattern of radial and spiral layer consecutively to generate functionally gradient porosity following the geometry of the scaffold. Medial region is constructed from medial axis and used as an internal geometric feature for each layer. The radial layers are generated with sub-region channels by connecting the boundaries of the medial region and the layer’s outer contour. Proper connections with allowable geometric properties are ensured by applying optimization algorithms. Iso-porosity regions are determined by dividing the sub-regions into pore cells. The combination of consecutive layers generates the pore cells with desired pore sizes. To ensure the fabrication of the designed scaffolds, both contours have been optimized for a continuous, interconnected, and smooth deposition path-planning. The proposed methodologies can generate the structure with gradient (linear or non-linear), variational or constant porosity that can provide localized control of variational porosity along the scaffold architecture. The designed porous structures can be fabricated using bio-additive fabrication processes

    Multiscale, thermomechanical topology optimization of self-supporting cellular structures for porous injection molds

    Get PDF
    Purpose This paper aims to establish a multiscale topology optimization method for the optimal design of non-periodic, self-supporting cellular structures subjected to thermo-mechanical loads. The result is a hierarchically complex design that is thermally efficient, mechanically stable and suitable for additive manufacturing (AM). Design/methodology/approach The proposed method seeks to maximize thermo-mechanical performance at the macroscale in a conceptual design while obtaining maximum shear modulus for each unit cell at the mesoscale. Then, the macroscale performance is re-estimated, and the mesoscale design is updated until the macroscale performance is satisfied. Findings A two-dimensional Messerschmitt Bolkow Bolhm (MBB) beam withstanding thermo-mechanical load is presented to illustrate the proposed design method. Furthermore, the method is implemented to optimize a three-dimensional injection mold, which is successfully prototyped using 420 stainless steel infiltrated with bronze. Originality/value By developing a computationally efficient and manufacturing friendly inverse homogenization approach, the novel multiscale design could generate porous molds which can save up to 30 per cent material compared to their solid counterpart without decreasing thermo-mechanical performance. Practical implications This study is a useful tool for the designer in molding industries to reduce the cost of the injection mold and take full advantage of AM
    • …
    corecore