3,802 research outputs found

    Modulation and Estimation with a Helper

    Full text link
    The problem of transmitting a parameter value over an additive white Gaussian noise (AWGN) channel is considered, where, in addition to the transmitter and the receiver, there is a helper that observes the noise non-causally and provides a description of limited rate RhR_\mathrm{h} to the transmitter and/or the receiver. We derive upper and lower bounds on the optimal achievable α\alpha-th moment of the estimation error and show that they coincide for small values of α\alpha and for low SNR values. The upper bound relies on a recently proposed channel-coding scheme that effectively conveys RhR_\mathrm{h} bits essentially error-free and the rest of the rate - over the same AWGN channel without help, with the error-free bits allocated to the most significant bits of the quantized parameter. We then concentrate on the setting with a total transmit energy constraint, for which we derive achievability results for both channel coding and parameter modulation for several scenarios: when the helper assists only the transmitter or only the receiver and knows the noise, and when the helper assists the transmitter and/or the receiver and knows both the noise and the message. In particular, for the message-informed helper that assists both the receiver and the transmitter, it is shown that the error probability in the channel-coding task decays doubly exponentially. Finally, we translate these results to those for continuous-time power-limited AWGN channels with unconstrained bandwidth. As a byproduct, we show that the capacity with a message-informed helper that is available only at the transmitter can exceed the capacity of the same scenario when the helper knows only the noise but not the message.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Mobile Jammers for Secrecy Rate Maximization in Cooperative Networks

    Full text link
    We consider a source (Alice) trying to communicate with a destination (Bob), in a way that an unauthorized node (Eve) cannot infer, based on her observations, the information that is being transmitted. The communication is assisted by multiple multi-antenna cooperating nodes (helpers) who have the ability to move. While Alice transmits, the helpers transmit noise that is designed to affect the entire space except Bob. We consider the problem of selecting the helper weights and positions that maximize the system secrecy rate. It turns out that this optimization problem can be efficiently solved, leading to a novel decentralized helper motion control scheme. Simulations indicate that introducing helper mobility leads to considerable savings in terms of helper transmit power, as well as total number of helpers required for secrecy communications.Comment: ICASSP 201

    The Wiretap Channel with Feedback: Encryption over the Channel

    Full text link
    In this work, the critical role of noisy feedback in enhancing the secrecy capacity of the wiretap channel is established. Unlike previous works, where a noiseless public discussion channel is used for feedback, the feed-forward and feedback signals share the same noisy channel in the present model. Quite interestingly, this noisy feedback model is shown to be more advantageous in the current setting. More specifically, the discrete memoryless modulo-additive channel with a full-duplex destination node is considered first, and it is shown that the judicious use of feedback increases the perfect secrecy capacity to the capacity of the source-destination channel in the absence of the wiretapper. In the achievability scheme, the feedback signal corresponds to a private key, known only to the destination. In the half-duplex scheme, a novel feedback technique that always achieves a positive perfect secrecy rate (even when the source-wiretapper channel is less noisy than the source-destination channel) is proposed. These results hinge on the modulo-additive property of the channel, which is exploited by the destination to perform encryption over the channel without revealing its key to the source. Finally, this scheme is extended to the continuous real valued modulo-Λ\Lambda channel where it is shown that the perfect secrecy capacity with feedback is also equal to the capacity in the absence of the wiretapper.Comment: Submitted to IEEE Transactions on Information Theor

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Multiaccess Channels with State Known to One Encoder: Another Case of Degraded Message Sets

    Full text link
    We consider a two-user state-dependent multiaccess channel in which only one of the encoders is informed, non-causally, of the channel states. Two independent messages are transmitted: a common message transmitted by both the informed and uninformed encoders, and an individual message transmitted by only the uninformed encoder. We derive inner and outer bounds on the capacity region of this model in the discrete memoryless case as well as the Gaussian case. Further, we show that the bounds for the Gaussian case are tight in some special cases.Comment: 5 pages, Proc. of IEEE International Symposium on Information theory, ISIT 2009, Seoul, Kore
    • …
    corecore