1,163 research outputs found

    Reflections on security options for the real-time transport protocol framework

    Get PDF
    The Real-time Transport Protocol (RTP) supports a range of video conferencing, telephony, and streaming video ap- plications, but offers few native security features. We discuss the problem of securing RTP, considering the range of applications. We outline why this makes RTP a difficult protocol to secure, and describe the approach we have recently proposed in the IETF to provide security for RTP applications. This approach treats RTP as a framework with a set of extensible security building blocks, and prescribes mandatory-to-implement security at the level of different application classes, rather than at the level of the media transport protocol

    To NACK or not to NACK? Negative Acknowledgments in Information-Centric Networking

    Full text link
    Information-Centric Networking (ICN) is an internetworking paradigm that offers an alternative to the current IP\nobreakdash-based Internet architecture. ICN's most distinguishing feature is its emphasis on information (content) instead of communication endpoints. One important open issue in ICN is whether negative acknowledgments (NACKs) at the network layer are useful for notifying downstream nodes about forwarding failures, or requests for incorrect or non-existent information. In benign settings, NACKs are beneficial for ICN architectures, such as CCNx and NDN, since they flush state in routers and notify consumers. In terms of security, NACKs seem useful as they can help mitigating so-called Interest Flooding attacks. However, as we show in this paper, network-layer NACKs also have some unpleasant security implications. We consider several types of NACKs and discuss their security design requirements and implications. We also demonstrate that providing secure NACKs triggers the threat of producer-bound flooding attacks. Although we discuss some potential countermeasures to these attacks, the main conclusion of this paper is that network-layer NACKs are best avoided, at least for security reasons.Comment: 10 pages, 7 figure

    Design and Development of Network Reliability based Secure Multicast Routing Protocol for MANET

    Get PDF
    In Mobile Ad hoc network (MANET), link quality and stability of links as well as nodes play a major role. In ad hoc network, links are often changing which could affect the node mobility and integrity of data packets. In this research work, Network Reliability based Secure Multicast Routing Protocol (NRSMRP) is proposed to achieve network reliability by means of creation of reliable multicast tree. This multicast tree is constructed based on link quality and reliability trust metric. In first phase, node categorization and reliability metric calculation are implemented with the help of link quality. In second phase, reliable multicast tree is formed based on parent node and child node. Parent node must have god capacity and signal strength to communicate with child node. In last phase, authentication based multicast routes are established based on the calculation of direct reputation of mobile nodes. From the results, proposed protocol achieves better performance than existing schemes

    Host mobility key management in dynamic secure group communication

    Get PDF
    The key management has a fundamental role in securing group communications taking place over vast and unprotected networks. It is concerned with the distribution and update of the keying materials whenever any changes occur in the group membership. Wireless mobile environments enable members to move freely within the networks, which causes more difficulty to design efficient and scalable key management protocols. This is partly because both member location dynamic and group membership dynamic must be managed concurrently, which may lead to significant rekeying overhead. This paper presents a hierarchical group key management scheme taking the mobility of members into consideration intended for wireless mobile environments. The proposed scheme supports the mobility of members across wireless mobile environments while remaining in the group session with minimum rekeying transmission overhead. Furthermore, the proposed scheme alleviates 1-affect-n phenomenon, single point of failure, and signaling load caused by moving members at the core network. Simulation results shows that the scheme surpasses other existing efforts in terms of communication overhead and affected members. The security requirements studies also show the backward and forward secrecy is preserved in the proposed scheme even though the members move between areas

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table
    corecore