185 research outputs found

    Pattern Recognized Surveillance System

    Get PDF
    The ultimate objective is to create a complete-decision maker which allows us to detect the new state and initiate appropriate actions taking and analyzing all historical and current information based upon adaptive reasoning. Computers have the ability to extract information from multiple sources and identify and track patterns of activity that are inconsistent with normal operations

    Volumetric Occupancy Detection: A Comparative Analysis of Mapping Algorithms

    Full text link
    Despite the growing interest in innovative functionalities for collaborative robotics, volumetric detection remains indispensable for ensuring basic security. However, there is a lack of widely used volumetric detection frameworks specifically tailored to this domain, and existing evaluation metrics primarily focus on time and memory efficiency. To bridge this gap, the authors present a detailed comparison using a simulation environment, ground truth extraction, and automated evaluation metrics calculation. This enables the evaluation of state-of-the-art volumetric mapping algorithms, including OctoMap, SkiMap, and Voxblox, providing valuable insights and comparisons through the impact of qualitative and quantitative analyses. The study not only compares different frameworks but also explores various parameters within each framework, offering additional insights into their performance.Comment: 11 pages, 11 figures, 9 table

    Component degradation and system deterioration: An overview of early termination of PV-DG microgrid system

    Get PDF
    Degradation of components and system failure within the microgrid system is deteriorating the performance of electrification. The aim of this study is to discuss the relationship and connections between issues resulting from degradation and deterioration in the microgrid system, in addition to introducing the prominent impacts which may eventually lead to the premature termination of the microgrid system. This study explored the microgrid degradation and deterioration issues within four microgrid sections: generation section, storage section, transmission section, and distribution section. Subsequently, this study analyzes, derives, and classifies all emerging issues into four types of prominent impacts. The degradation and deterioration invoked many component performance issues into four main damaging outcomes, namely (i) deteriorated transmission line yielded issues regarding expected energy not achieved; (ii) energy deficit and unpredicted blackout come after the depth of discharge (DOD) reduction and invoke a loss of power supply; (iii) a shorter battery life cycle, shorter transformer lifespan, and decreased DG lifetime concluded as a shorter microgrid life expectancy; and (iv) rapid microgrid broke down and the crash of the key component inadvertently fastened the time to failure and gave rise to the early failure of a microgrid system. It is envisaged that the discussion in this study can provide useful mapped information for the researcher, stakeholder, operator, and other parties for thoroughly addressing various degradation and deterioration issues and anticipating the early termination of the microgrid system

    Using Relational Schemata in a Computer Immune System to Detect Multiple-Packet Network Intrusions

    Get PDF
    Given the increasingly prominent cyber-based threat, there are substantial research and development efforts underway in network and host-based intrusion detection using single-packet traffic analysis. However, there is a noticeable lack of research and development in the intrusion detection realm with regard to attacks that span multiple packets. This leaves a conspicuous gap in intrusion detection capability because not all attacks can be found by examining single packets alone. Some attacks may only be detected by examining multiple network packets collectively, considering how they relate to the big picture, not how they are represented as individual packets. This research demonstrates a multiple-packet relational sensor in the context of a Computer Immune System (CIS) model to search for attacks that might otherwise go unnoticed via single-packet detection methods. Using relational schemata, multiple-packet CIS sensors define self based on equal, less than, and greater than relationships between fields of routine network packet headers. Attacks are then detected by examining how the relationships among attack packets may lay outside of the previously defined self

    Analysis of Embedded Controllers Subject to Computational Overruns

    Get PDF
    Microcontrollers have become an integral part of modern everyday embedded systems, such as smart bikes, cars, and drones. Typically, microcontrollers operate under real-time constraints, which require the timely execution of programs on the resource-constrained hardware. As embedded systems are becoming increasingly more complex, microcontrollers run the risk of violating their timing constraints, i.e., overrunning the program deadlines. Breaking these constraints can cause severe damage to both the embedded system and the humans interacting with the device. Therefore, it is crucial to analyse embedded systems properly to ensure that they do not pose any significant danger if the microcontroller overruns a few deadlines.However, there are very few tools available for assessing the safety and performance of embedded control systems when considering the implementation of the microcontroller. This thesis aims to fill this gap in the literature by presenting five papers on the analysis of embedded controllers subject to computational overruns. Details about the real-time operating system's implementation are included into the analysis, such as what happens to the controller's internal state representation when the timing constraints are violated. The contribution includes theoretical and computational tools for analysing the embedded system's stability, performance, and real-time properties.The embedded controller is analysed under three different types of timing violations: blackout events (when no control computation is completed during long periods), weakly-hard constraints (when the number of deadline overruns is constrained over a window), and stochastic overruns (when violations of timing constraints are governed by a probabilistic process). These scenarios are combined with different implementation policies to reduce the gap between the analysis and its practical applicability. The analyses are further validated with a comprehensive experimental campaign performed on both a set of physical processes and multiple simulations.In conclusion, the findings of this thesis reveal that the effect deadline overruns have on the embedded system heavily depends the implementation details and the system's dynamics. Additionally, the stability analysis of embedded controllers subject to deadline overruns is typically conservative, implying that additional insights can be gained by also analysing the system's performance

    A Survey and Evaluation of Android-Based Malware Evasion Techniques and Detection Frameworks

    Get PDF
    Android platform security is an active area of research where malware detection techniques continuously evolve to identify novel malware and improve the timely and accurate detection of existing malware. Adversaries are constantly in charge of employing innovative techniques to avoid or prolong malware detection effectively. Past studies have shown that malware detection systems are susceptible to evasion attacks where adversaries can successfully bypass the existing security defenses and deliver the malware to the target system without being detected. The evolution of escape-resistant systems is an open research problem. This paper presents a detailed taxonomy and evaluation of Android-based malware evasion techniques deployed to circumvent malware detection. The study characterizes such evasion techniques into two broad categories, polymorphism and metamorphism, and analyses techniques used for stealth malware detection based on the malware’s unique characteristics. Furthermore, the article also presents a qualitative and systematic comparison of evasion detection frameworks and their detection methodologies for Android-based malware. Finally, the survey discusses open-ended questions and potential future directions for continued research in mobile malware detection

    Adaptive and autonomous protocol for spectrum identification and coordination in ad hoc cognitive radio network

    Get PDF
    The decentralised structure of wireless Ad hoc networks makes them most appropriate for quick and easy deployment in military and emergency situations. Consequently, in this thesis, special interest is given to this form of network. Cognitive Radio (CR) is defined as a radio, capable of identifying its spectral environment and able to optimally adjust its transmission parameters to achieve interference free communication channel. In a CR system, Dynamic Spectrum Access (DSA) is made feasible. CR has been proposed as a candidate solution to the challenge of spectrum scarcity. CR works to solve this challenge by providing DSA to unlicensed (secondary) users. The introduction of this new and efficient spectrum management technique, the DSA, has however, opened up some challenges in this wireless Ad hoc Network of interest; the Cognitive Radio Ad Hoc Network (CRAHN). These challenges, which form the specific focus of this thesis are as follows: First, the poor performance of the existing spectrum sensing techniques in low Signal to Noise Ratio (SNR) conditions. Secondly the lack of a central coordination entity for spectrum allocation and information exchange in the CRAHN. Lastly, the existing Medium Access Control (MAC) Protocol such as the 802.11 was designed for both homogeneous spectrum usage and static spectrum allocation technique. Consequently, this thesis addresses these challenges by first developing an algorithm comprising of the Wavelet-based Scale Space Filtering (WSSF) algorithm and the Otsu's multi-threshold algorithm to form an Adaptive and Autonomous WaveletBased Scale Space Filter (AWSSF) for Primary User (PU) sensing in CR. These combined algorithms produced an enhanced algorithm that improves detection in low SNR conditions when compared to the performance of EDs and other spectrum sensing techniques in the literature. Therefore, the AWSSF met the performance requirement of the IEEE 802.22 standard as compared to other approaches and thus considered viable for application in CR. Next, a new approach for the selection of control channel in CRAHN environment using the Ant Colony System (ACS) was proposed. The algorithm reduces the complex objective of selecting control channel from an overtly large spectrum space,to a path finding problem in a graph. We use pheromone trails, proportional to channel reward, which are computed based on received signal strength and channel availability, to guide the construction of selection scheme. Simulation results revealed ACS as a feasible solution for optimal dynamic control channel selection. Finally, a new channel hopping algorithm for the selection of a control channel in CRAHN was presented. This adopted the use of the bio-mimicry concept to develop a swarm intelligence based mechanism. This mechanism guides nodes to select a common control channel within a bounded time for the purpose of establishing communication. Closed form expressions for the upper bound of the time to rendezvous (TTR) and Expected TTR (ETTR) on a common control channel were derived for various network scenarios. The algorithm further provides improved performance in comparison to the Jump-Stay and Enhanced Jump-Stay Rendezvous Algorithms. We also provided simulation results to validate our claim of improved TTR. Based on the results obtained, it was concluded that the proposed system contributes positively to the ongoing research in CRAHN

    Consumer-facing technology fraud : economics, attack methods and potential solutions

    Get PDF
    The emerging use of modern technologies has not only benefited society but also attracted fraudsters and criminals to misuse the technology for financial benefits. Fraud over the Internet has increased dramatically, resulting in an annual loss of billions of dollars to customers and service providers worldwide. Much of such fraud directly impacts individuals, both in the case of browser-based and mobile-based Internet services, as well as when using traditional telephony services, either through landline phones or mobiles. It is important that users of the technology should be both informed of fraud, as well as protected from frauds through fraud detection and prevention systems. In this paper, we present the anatomy of frauds for different consumer-facing technologies from three broad perspectives - we discuss Internet, mobile and traditional telecommunication, from the perspectives of losses through frauds over the technology, fraud attack mechanisms and systems used for detecting and preventing frauds. The paper also provides recommendations for securing emerging technologies from fraud and attacks

    Trusting AI: Integrating Artificial Intelligence into the Army’s Professional Expert Knowledge

    Get PDF
    Integrating artificially intelligent technologies for military purposes poses a special challenge. In previous arms races, such as the race to atomic bomb technology during World War II, expertise resided within the Department of Defense. But in the artificial intelligence (AI) arms race, expertise dwells mostly within industry and academia. Also, unlike the development of the bomb, effective employment of AI technology cannot be relegated to a few specialists; almost everyone will have to develop some level of AI and data literacy. Complicating matters is AI-driven systems can be a “black box” in that humans may not be able to explain some output, much less be held accountable for its consequences. This inability to explain coupled with the cession to a machine of some functions normally performed by humans risks the relinquishment of some jurisdiction and, consequently, autonomy to those outside the profession. Ceding jurisdiction could impact the American people’s trust in their military and, thus, its professional standing. To avoid these outcomes, creating and maintaining trust requires integrating knowledge of AI and data science into the military’s professional expertise. This knowledge covers both AI technology and how its use impacts command responsibility; talent management; governance; and the military’s relationship with the US government, the private sector, and society.https://press.armywarcollege.edu/monographs/1955/thumbnail.jp
    • …
    corecore