129 research outputs found

    Ensemble learning using multi-objective optimisation for arabic handwritten words

    Get PDF
    Arabic handwriting recognition is a dynamic and stimulating field of study within pattern recognition. This system plays quite a significant part in today's global environment. It is a widespread and computationally costly function due to cursive writing, a massive number of words, and writing style. Based on the literature, the existing features lack data supportive techniques and building geometric features. Most ensemble learning approaches are based on the assumption of linear combination, which is not valid due to differences in data types. Also, the existing approaches of classifier generation do not support decision-making for selecting the most suitable classifier, and it requires enabling multi-objective optimisation to handle these differences in data types. In this thesis, new type of feature for handwriting using Segments Interpolation (SI) to find the best fitting line in each of the windows with a model for finding the best operating point window size for SI features. Multi-Objective Ensemble Oriented (MOEO) formulated to control the classifier topology and provide feedback support for changing the classifiers' topology and weights based on the extension of Non-dominated Sorting Genetic Algorithm (NSGA-II). It is designated as the Random Subset based Parents Selection (RSPS-NSGA-II) to handle neurons and accuracy. Evaluation metrics from two perspectives classification and Multiobjective optimization. The experimental design based on two subsets of the IFN/ENIT database. The first one consists of 10 classes (C10) and 22 classes (C22). The features were tested with Support Vector Machine (SVM) and Extreme Learning Machine (ELM). This work improved due to the SI feature. SI shows a significant result with SVM with 88.53% for C22. RSPS for C10 at k=2 achieved 91% accuracy with fewer neurons than NSGA-II, and for C22 at k=10, accuracy has been increased 81% compared to NSGA-II 78%. Future work may consider introducing more features to the system, applying them to other languages, and integrating it with sequence learning for more accuracy

    Adapting heterogeneous ensembles with particle swarm optimization for video face recognition

    Get PDF
    In video-based face recognition applications, matching is typically performed by comparing query samples against biometric models (i.e., an individual’s facial model) that is designed with reference samples captured during an enrollment process. Although statistical and neural pattern classifiers may represent a flexible solution to this kind of problem, their performance depends heavily on the availability of representative reference data. With operators involved in the data acquisition process, collection and analysis of reference data is often expensive and time consuming. However, although a limited amount of data is initially available during enrollment, new reference data may be acquired and labeled by an operator over time. Still, due to a limited control over changing operational conditions and personal physiology, classification systems used for video-based face recognition are confronted to complex and changing pattern recognition environments. This thesis concerns adaptive multiclassifier systems (AMCSs) for incremental learning of new data during enrollment and update of biometric models. To avoid knowledge (facial models) corruption over time, the proposed AMCS uses a supervised incremental learning strategy based on dynamic particle swarm optimization (DPSO) to evolve a swarm of fuzzy ARTMAP (FAM) neural networks in response to new data. As each particle in a FAM hyperparameter search space corresponds to a FAM network, the learning strategy adapts learning dynamics by co-optimizing all their parameters – hyperparameters, weights, and architecture – in order to maximize accuracy, while minimizing computational cost and memory resources. To achieve this, the relationship between the classification and optimization environments is studied and characterized, leading to these additional contributions. An initial version of this DPSO-based incremental learning strategy was applied to an adaptive classification system (ACS), where the accuracy of a single FAM neural network is maximized. It is shown that the original definition of a classification system capable of supervised incremental learning must be reconsidered in two ways. Not only must a classifier’s learning dynamics be adapted to maintain a high level of performance through time, but some previously acquired learning validation data must also be used during adaptation. It is empirically shown that adapting a FAM during incremental learning constitutes a type III dynamic optimization problem in the search space, where the local optima values and their corresponding position change in time. Results also illustrate the necessity of a long term memory (LTM) to store previously acquired data for unbiased validation and performance estimation. The DPSO-based incremental learning strategy was then modified to evolve the swarm (or pool) of FAM networks within an AMCS. A key element for the success of ensembles is tackled: classifier diversity. With several correlation and diversity indicators, it is shown that genoVIII type (i.e., hyperparameters) diversity in the optimization environment is correlated with classifier diversity in the classification environment. Following this result, properties of a DPSO algorithm that seeks to maintain genotype particle diversity to detect and follow local optima are exploited to generate and evolve diversified pools of FAMclassifiers. Furthermore, a greedy search algorithm is presented to perform an efficient ensemble selection based on accuracy and genotype diversity. This search algorithm allows for diversified ensembles without evaluating costly classifier diversity indicators, and selected ensembles also yield accuracy comparable to that of reference ensemble-based and batch learning techniques, with only a fraction of the resources. Finally, after studying the relationship between the classification environment and the search space, the objective space of the optimization environment is also considered. An aggregated dynamical niching particle swarm optimization (ADNPSO) algorithm is presented to guide the FAM networks according two objectives: FAM accuracy and computational cost. Instead of purely solving a multi-objective optimization problem to provide a Pareto-optimal front, the ADNPSO algorithm aims to generate pools of classifiers among which both genotype and phenotype (i.e., objectives) diversity are maximized. ADNPSO thus uses information in the search spaces to guide particles towards different local Pareto-optimal fronts in the objective space. A specialized archive is then used to categorize solutions according to FAMnetwork size and then capture locally non-dominated classifiers. These two components are then integrated to the AMCS through an ADNPSO-based incremental learning strategy. The AMCSs proposed in this thesis are promising since they create ensembles of classifiers designed with the ADNPSO-based incremental learning strategy and provide a high level of accuracy that is statistically comparable to that obtained through mono-objective optimization and reference batch learning techniques, and yet requires a fraction of the computational cost

    Artificial cognitive architecture with self-learning and self-optimization capabilities. Case studies in micromachining processes

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informåtica. Fecha de lectura : 22-09-201

    Efficient speaker recognition for mobile devices

    Get PDF
    • 

    corecore