508 research outputs found

    VERIFICATION OF TIME-DEPENDENT ANALYSIS METHODS FOR

    Get PDF
    Commercially-used stationary analysis techniques for quantification of surface EMG signals yield in general only small amounts of information about motor unit recruitments and their frequency behavior. Therefore, new methods for time-dependent analysis of EMG signals are of great interest. In this study two analysis techniques developed for non-stationary biological signals are verified. First, adaptive power estimation proved that the time characteristic of muscle activity is very variable under constant external conditions. Secondly, a bivariate ARMA model was used for a time-dependent frequency analysis of EMG signals showing specific similarities in the curves as well as the high variability of the time courses of median frequency. The application of the methods presented here to EMG signals gives a new understanding of the inner dynamics of the muscle functioning

    Myoelectric forearm prostheses: State of the art from a user-centered perspective

    Get PDF
    User acceptance of myoelectric forearm prostheses is currently low. Awkward control, lack of feedback, and difficult training are cited as primary reasons. Recently, researchers have focused on exploiting the new possibilities offered by advancements in prosthetic technology. Alternatively, researchers could focus on prosthesis acceptance by developing functional requirements based on activities users are likely to perform. In this article, we describe the process of determining such requirements and then the application of these requirements to evaluating the state of the art in myoelectric forearm prosthesis research. As part of a needs assessment, a workshop was organized involving clinicians (representing end users), academics, and engineers. The resulting needs included an increased number of functions, lower reaction and execution times, and intuitiveness of both control and feedback systems. Reviewing the state of the art of research in the main prosthetic subsystems (electromyographic [EMG] sensing, control, and feedback) showed that modern research prototypes only partly fulfill the requirements. We found that focus should be on validating EMG-sensing results with patients, improving simultaneous control of wrist movements and grasps, deriving optimal parameters for force and position feedback, and taking into account the psychophysical aspects of feedback, such as intensity perception and spatial acuity

    Time-variant spectral analysis of surface EMG – Applications in sports practice

    Get PDF
    The aim of this paper is the presentation of time-variant spectrograms of surface EMG signals to estimate fatigue processes in muscle and to consider recruitments of motor units. For this we used techniques on the base of ARMA and AR models. We illustrate our applications by three examples: influence of training to maximal and explosive isometric contraction, fatigue processes in an all-out cycling exercise and intramuscular coordination during a fast movement

    Adaptive learning to speed-up control of prosthetic hands: A few things everybody should know

    Get PDF
    Domain adaptation methods have been proposed to reduce the training efforts needed to control an upper-limb prosthesis by adapting well performing models from previous subjects to the new subject. These studies generally reported impressive reductions in the required number of training samples to achieve a certain level of accuracy for intact subjects. We further investigate two popular methods in this field to verify whether this result also applies to amputees. Our findings show instead that this improvement can largely be attributed to a suboptimal hyperparameter configuration. When hyperparameters are appropriately tuned, the standard approach that does not exploit prior information performs on par with the more complicated transfer learning algorithms. Additionally, earlier studies erroneously assumed that the number of training samples relates proportionally to the efforts required from the subject. However, a repetition of a movement is the atomic unit for subjects and the total number of repetitions should therefore be used as reliable measure for training efforts. Also when correcting for this mistake, we do not find any performance increase due to the use of prior models

    APPLICATION OF AN ARMA-MODEL AS A METHOD OF TIME-VARIANT SPECTRAL ANALYSIS TO SURFACE EMG-SIGNALS IN SWIM BENCH EXERCISES

    Get PDF
    The purpose of this study is the determination of spectral parameters of surface EMG signals during a swim specific exercise by means of an ARMA model. This method is suitable for nonstationary signals such as EMG, MEG and EMG. Nine female top elite swimmers participated in this research. During a two minute swim bench exercise the momentary median frequency decreases. Changes of the EMG power for the diHerent wave bands could be found. By means of this analysis information aboul fatigue and changes in the intramuscular coordination are possible

    Time-varying Autoregressive Modeling of Nonstationary Signals

    Get PDF
    Nonstationary signal modeling is a research topic of practical interest. In this thesis, we adopt a time-varying (TV) autoregressive (AR) model using the basis function (BF) parameter estimation method for nonstationary process identification and instantaneous frequency (IF) estimation. The current TVAR model in direct form (DF) with the blockwise least-squares and recursive weighted-least-squares BF methods perform equivalently well in signal modeling, but the large estimation error may cause temporary instabilities of the estimated model. To achieve convenient model stability monitoring and pole tracking, the TVAR model in cascade form (CF) was proposed through the parameterization in terms of TV poles (represented by second order section coefficients, Cartesian coordinates, Polar coordinates), where the time variation of each pole parameter is assumed to be the linear combination of BFs. The nonlinear system equations for the TVAR model in CF are solved iteratively using the Gauss-Newton algorithm. Using the CF, the model stability is easily controlled by constraining the estimated TV poles within the unit circle. The CF model shows similar performance trends to the DF model using the recursive BF method, and the TV pole representation in Cartesian coordinates outperforms all other representations. The individual frequency variation can be finely tracked using the CF model, when several frequency components are present in the signal. Simulations were carried on synthetic sinusoidal signals with different frequency variations for IF estimation. For the TVAR model in DF (blockwise), the basis dimension (BD) is an important factor on frequency estimation accuracy. For the TVAR model in DF (recursive) and CF (Cartesian), the influences of BD are negligible. The additive white noise in the observed signal degrades the estimation performance, and the the noise effects can be reduce by using higher model order. Experiments were carried on the real electromyography (EMG) data for frequency estimation in the analysis of muscle fatigue. The TVAR modeling methods show equivalent performance to the conventional Fourier transform method

    A critical look at studies applying over-sampling on the TPEHGDB dataset

    Get PDF
    Preterm birth is the leading cause of death among young children and has a large prevalence globally. Machine learning models, based on features extracted from clinical sources such as electronic patient files, yield promising results. In this study, we review similar studies that constructed predictive models based on a publicly available dataset, called the Term-Preterm EHG Database (TPEHGDB), which contains electrohysterogram signals on top of clinical data. These studies often report near-perfect prediction results, by applying over-sampling as a means of data augmentation. We reconstruct these results to show that they can only be achieved when data augmentation is applied on the entire dataset prior to partitioning into training and testing set. This results in (i) samples that are highly correlated to data points from the test set are introduced and added to the training set, and (ii) artificial samples that are highly correlated to points from the training set being added to the test set. Many previously reported results therefore carry little meaning in terms of the actual effectiveness of the model in making predictions on unseen data in a real-world setting. After focusing on the danger of applying over-sampling strategies before data partitioning, we present a realistic baseline for the TPEHGDB dataset and show how the predictive performance and clinical use can be improved by incorporating features from electrohysterogram sensors and by applying over-sampling on the training set
    corecore