489 research outputs found

    Adaptable transition systems

    Get PDF
    We present an essential model of adaptable transition systems inspired by white-box approaches to adaptation and based on foundational models of component based systems. The key feature of adaptable transition systems are control propositions, imposing a clear separation between ordinary, functional behaviours and adaptive ones. We instantiate our approach on interface automata yielding adaptable interface automata, but it may be instantiated on other foundational models of component-based systems as well. We discuss how control propositions can be exploited in the specification and analysis of adaptive systems, focusing on various notions proposed in the literature, like adaptability, control loops, and control synthesis

    Adapting Quality Assurance to Adaptive Systems: The Scenario Coevolution Paradigm

    Full text link
    From formal and practical analysis, we identify new challenges that self-adaptive systems pose to the process of quality assurance. When tackling these, the effort spent on various tasks in the process of software engineering is naturally re-distributed. We claim that all steps related to testing need to become self-adaptive to match the capabilities of the self-adaptive system-under-test. Otherwise, the adaptive system's behavior might elude traditional variants of quality assurance. We thus propose the paradigm of scenario coevolution, which describes a pool of test cases and other constraints on system behavior that evolves in parallel to the (in part autonomous) development of behavior in the system-under-test. Scenario coevolution offers a simple structure for the organization of adaptive testing that allows for both human-controlled and autonomous intervention, supporting software engineering for adaptive systems on a procedural as well as technical level.Comment: 17 pages, published at ISOLA 201

    Formal methods for a system of systems analysis framework applied to traffic management

    Get PDF
    Formal methods for systems and system of systems engineering (SoSE) can bring precision to architecting and design, and increased trustworthiness in verification; but they require the use of formal languages that are not broadly comprehensible to the various stakeholders. The evolution of Model Based Systems Engineering (MBSE) using the Systems Modeling Language (SysML) lies in a middle ground between legacy document-based SoSE and formal methods. SysML is a graphical language but not a formal language. Initiatives in the Object Management Group (OMG), such as the development of the Foundational Unified Modeling Language (fUML) seek to bring precise semantics to object-oriented modeling languages. Following the philosophy of fUML, we offer a framework for associating precise semantics with Unified Modeling Language (UML) and SysML models essential for SoSE architecting and design. Straightforward methods are prescribed to develop the essential models and to create semantic transformations between them. Matrix representations can be used to perform analyses that are concordant with the system of UML or SysML models that represent the system or SoS. The framework and methods developed in this paper are applied to a Traffic Management system of systems (TMSoS) that has been a subject of research presented at previous IEEE SoSE conferences

    Innovations and advances in instrumentation at the W. M. Keck Observatory

    Get PDF
    Since the start of operations in 1993, the twin 10 meter W. M. Keck Observatory telescopes have continued to maximize their scientific impact and to produce transformative discoveries that keep the observing community on the frontiers of astronomical research. Upgraded capabilities and new instrumentation are provided though collaborative partnerships with Caltech and UC instrument development teams. The observatory adapts and responds to the observers’ evolving needs as defined in the observatory’s strategic plan, periodically refreshed in collaboration with the science community. This paper summarizes the performance of recently commissioned infrastructure projects, technology upgrades, and new additions to the suite of instrumentation at the observatory. We will also provide a status of projects currently in the design or development phase, and since we need to keep our eye on the future, we mention projects in exploratory phases that originate from our strategic plan. Recently commissioned projects include telescope control system upgrades, OSIRIS spectrometer and imager upgrades, and deployments of the Keck Cosmic Web Imager (KCWI), the Near-Infrared Echellette Spectrometer (NIRES), and the Keck I Deployable Tertiary Mirror (KIDM3). Under development are upgrades to the NIRSPEC instrument and adaptive optics (AO) system. Major instrumentation in design phases include the Keck Cosmic Reionization Mapper and the Keck Planet Finder. Future instrumentation studies and proposals underway include a Ground Layer Adaptive Optics system, NIRC2 upgrades, the energy sensitive instrument KRAKENS, an integral field spectrograph LIGER, and a laser tomography AO upgrade. Last, we briefly discuss recovering MOSFIRE and its return to science operations

    Socio-technical case study method in building performance evaluation

    Get PDF
    Raymond J. Cole’s body of work, spanning sustainable design, system complexity and human agency, has encouraged researchers to reconceptualize the notions of comfort and building performance. However, methods for predicting energy use and assessing environmental performance have remained predominantly within a reductionist approach common to physics and engineering. The recognition that building performance is characterized by interactive adaptivity and co-evolution of the physical with the social has not been matched by the generation of new methods. Although social practice theories that articulate the socio-technical nature of the built environment have been increasingly appropriated to understand occupants’ role in performance, the challenge of studying buildings as complex socio-technical systems remains. This methodological paper discusses the application of the case study method (CSM) to the study of 10 retrofit projects selected from the Retrofit for the Future (RfF) Programme in UK between 2011 and 2012. Guided by Greene’s framework for methodological discourse, the epistemic regime is articulated under four headings: philosophical assumptions, investigative logics, guidelines for practice and contribution to system perspective. The discussion of these domains highlights the fecundity of CSM in providing a more nuanced understanding of the interaction between social and technical systems in performance

    Activity Report: Automatic Control 1985-1987

    Get PDF

    Working memory, strategy execution, and strategy selection in mental arithmetic

    Get PDF
    A total of 72 participants estimated products of complex multiplications of two-digit operands (e.g., 63 x 78), using two strategies that differed in complexity. The simple strategy involved rounding both operands down to the closest decades (e.g., 60 _ 70), whereas the complex strategy required rounding both operands up to the closest decades (e.g., 70 _ 80). Participants accomplished this estimation task in two conditions: a no-load condition and a working-memory load condition in which executive components of working memory were taxed. The choice/no-choice method was used to obtain unbiased strategy execution and strategy selection data. Results showed that loading working memory resources led participants to poorer strategy execution. Additionally, participants selected the simple strategy more often under working-memory load. We discuss the implications of the results to further our understanding of variations in strategy selection and execution, as well as our understanding of the impact of working-memory load on arithmetic performance and other cognitive domains
    • …
    corecore