2,590 research outputs found

    Glaubwürdigkeit und Einsatz des szenariobasierten X-in-the-Loop-Tests für Fahrerassistenzsysteme

    Get PDF
    Fahrerassistenzsysteme tragen gerade im Bereich der Nutzfahrzeuge zur Verkehrssicherheit bei. Darüber hinaus bietet das hochautomatisierte Fahren neue Geschäftsmodelle. Eine zentrale Herausforderung bei der Entwicklung dieser Systeme ist die steigende Breite und Tiefe der Testfälle. Bereits in heutigen Entwicklungsprojekten stoßen vorhandene Realtestkapazitäten an ihre Grenzen. Daher sind neue Methoden zum Test von Fahrerassistenzsystemen erforderlich. Die Kombination aus szenariobasiertem Testen und X-in-the-Loop-Testumgebungen ist ein vielversprechender Ansatz. In dieser Dissertation werden drei Einsatzmöglichkeiten des szenariobasierten XiL-Tests in einem Serien-Entwicklungsprojekt eingeführt und diskutiert. Als besonders geeignet wird hierbei der Einsatz beim Software-Qualifizierungstest bewertet und in einem Prozessentwurf weiter detailliert. Schwerpunkt ist die Zuordnung von Szenarien auf Testumgebungen mit dem Ziel, die Testabdeckung, die Glaubwürdigkeit der Testergebnisse und die Effizienz der Testdurchführung zu optimieren. Ein entscheidender Prozessschritt ist die sogenannte Glaubwürdigkeitsbewertung. Diese bewertet ein konkretes Szenario in einer spezifischen Testumgebung und besteht je nach Konfidenzanforderung aus den drei Schritten Prädiktion, Plausibilisierung und Validierung. In der Prädiktion werden mithilfe von Unsicherheitsmodellen für drei Subsysteme der XiL-Umgebung und einer Monte-Carlo-Simulation Testergebnis-Verteilungen generiert und mit einem Multinomialansatz Konfidenzintervalle ermittelt. Die Plausibilisierung prüft mithilfe von Pass/Fail-Kriterien und Szenariodistanzmaßen die Äquivalenz einzelner Testausführungen in XiL und Realtest. Bei der Validierung findet ein statistischer Abgleich der Testergebnis-Verteilungen aus XiL und Realtest mithilfe des Barnard-Tests statt. Die Glaubwürdigkeitsbewertung wird auf Basis von Software-in-the-Loop-Daten eines Entwicklungsprojekts für Fahrerassistenzsysteme für insgesamt sieben konkrete Szenarien evaluiert

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Mapping the Focal Points of WordPress: A Software and Critical Code Analysis

    Get PDF
    Programming languages or code can be examined through numerous analytical lenses. This project is a critical analysis of WordPress, a prevalent web content management system, applying four modes of inquiry. The project draws on theoretical perspectives and areas of study in media, software, platforms, code, language, and power structures. The applied research is based on Critical Code Studies, an interdisciplinary field of study that holds the potential as a theoretical lens and methodological toolkit to understand computational code beyond its function. The project begins with a critical code analysis of WordPress, examining its origins and source code and mapping selected vulnerabilities. An examination of the influence of digital and computational thinking follows this. The work also explores the intersection of code patching and vulnerability management and how code shapes our sense of control, trust, and empathy, ultimately arguing that a rhetorical-cultural lens can be used to better understand code\u27s controlling influence. Recurring themes throughout these analyses and observations are the connections to power and vulnerability in WordPress\u27 code and how cultural, processual, rhetorical, and ethical implications can be expressed through its code, creating a particular worldview. Code\u27s emergent properties help illustrate how human values and practices (e.g., empathy, aesthetics, language, and trust) become encoded in software design and how people perceive the software through its worldview. These connected analyses reveal cultural, processual, and vulnerability focal points and the influence these entanglements have concerning WordPress as code, software, and platform. WordPress is a complex sociotechnical platform worthy of further study, as is the interdisciplinary merging of theoretical perspectives and disciplines to critically examine code. Ultimately, this project helps further enrich the field by introducing focal points in code, examining sociocultural phenomena within the code, and offering techniques to apply critical code methods

    Secure storage systems for untrusted cloud environments

    Get PDF
    The cloud has become established for applications that need to be scalable and highly available. However, moving data to data centers owned and operated by a third party, i.e., the cloud provider, raises security concerns because a cloud provider could easily access and manipulate the data or program flow, preventing the cloud from being used for certain applications, like medical or financial. Hardware vendors are addressing these concerns by developing Trusted Execution Environments (TEEs) that make the CPU state and parts of memory inaccessible from the host software. While TEEs protect the current execution state, they do not provide security guarantees for data which does not fit nor reside in the protected memory area, like network and persistent storage. In this work, we aim to address TEEs’ limitations in three different ways, first we provide the trust of TEEs to persistent storage, second we extend the trust to multiple nodes in a network, and third we propose a compiler-based solution for accessing heterogeneous memory regions. More specifically, • SPEICHER extends the trust provided by TEEs to persistent storage. SPEICHER implements a key-value interface. Its design is based on LSM data structures, but extends them to provide confidentiality, integrity, and freshness for the stored data. Thus, SPEICHER can prove to the client that the data has not been tampered with by an attacker. • AVOCADO is a distributed in-memory key-value store (KVS) that extends the trust that TEEs provide across the network to multiple nodes, allowing KVSs to scale beyond the boundaries of a single node. On each node, AVOCADO carefully divides data between trusted memory and untrusted host memory, to maximize the amount of data that can be stored on each node. AVOCADO leverages the fact that we can model network attacks as crash-faults to trust other nodes with a hardened ABD replication protocol. • TOAST is based on the observation that modern high-performance systems often use several different heterogeneous memory regions that are not easily distinguishable by the programmer. The number of regions is increased by the fact that TEEs divide memory into trusted and untrusted regions. TOAST is a compiler-based approach to unify access to different heterogeneous memory regions and provides programmability and portability. TOAST uses a load/store interface to abstract most library interfaces for different memory regions

    2023-2024 Catalog

    Get PDF
    The 2023-2024 Governors State University Undergraduate and Graduate Catalog is a comprehensive listing of current information regarding:Degree RequirementsCourse OfferingsUndergraduate and Graduate Rules and Regulation

    Towards A Practical High-Assurance Systems Programming Language

    Full text link
    Writing correct and performant low-level systems code is a notoriously demanding job, even for experienced developers. To make the matter worse, formally reasoning about their correctness properties introduces yet another level of complexity to the task. It requires considerable expertise in both systems programming and formal verification. The development can be extremely costly due to the sheer complexity of the systems and the nuances in them, if not assisted with appropriate tools that provide abstraction and automation. Cogent is designed to alleviate the burden on developers when writing and verifying systems code. It is a high-level functional language with a certifying compiler, which automatically proves the correctness of the compiled code and also provides a purely functional abstraction of the low-level program to the developer. Equational reasoning techniques can then be used to prove functional correctness properties of the program on top of this abstract semantics, which is notably less laborious than directly verifying the C code. To make Cogent a more approachable and effective tool for developing real-world systems, we further strengthen the framework by extending the core language and its ecosystem. Specifically, we enrich the language to allow users to control the memory representation of algebraic data types, while retaining the automatic proof with a data layout refinement calculus. We repurpose existing tools in a novel way and develop an intuitive foreign function interface, which provides users a seamless experience when using Cogent in conjunction with native C. We augment the Cogent ecosystem with a property-based testing framework, which helps developers better understand the impact formal verification has on their programs and enables a progressive approach to producing high-assurance systems. Finally we explore refinement type systems, which we plan to incorporate into Cogent for more expressiveness and better integration of systems programmers with the verification process

    Large Language Models for Software Engineering: Survey and Open Problems

    Full text link
    This paper provides a survey of the emerging area of Large Language Models (LLMs) for Software Engineering (SE). It also sets out open research challenges for the application of LLMs to technical problems faced by software engineers. LLMs' emergent properties bring novelty and creativity with applications right across the spectrum of Software Engineering activities including coding, design, requirements, repair, refactoring, performance improvement, documentation and analytics. However, these very same emergent properties also pose significant technical challenges; we need techniques that can reliably weed out incorrect solutions, such as hallucinations. Our survey reveals the pivotal role that hybrid techniques (traditional SE plus LLMs) have to play in the development and deployment of reliable, efficient and effective LLM-based SE
    corecore