5,218 research outputs found

    The Ackermann Award 2016

    Get PDF
    The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in Computer Science. It is presented during the annual conference of the EACSL (CSL\u27xx). This contribution reports on the 2016 edition of the award

    A method for comparing non-nested models with application to astrophysical searches for new physics

    Full text link
    Searches for unknown physics and decisions between competing astrophysical models to explain data both rely on statistical hypothesis testing. The usual approach in searches for new physical phenomena is based on the statistical Likelihood Ratio Test (LRT) and its asymptotic properties. In the common situation, when neither of the two models under comparison is a special case of the other i.e., when the hypotheses are non-nested, this test is not applicable. In astrophysics, this problem occurs when two models that reside in different parameter spaces are to be compared. An important example is the recently reported excess emission in astrophysical γ\gamma-rays and the question whether its origin is known astrophysics or dark matter. We develop and study a new, simple, generally applicable, frequentist method and validate its statistical properties using a suite of simulations studies. We exemplify it on realistic simulated data of the Fermi-LAT γ\gamma-ray satellite, where non-nested hypotheses testing appears in the search for particle dark matter.Comment: We welcome examples of non-nested models testing problem

    Gamma Rays from Star Formation in Clusters of Galaxies

    Full text link
    Star formation in galaxies is observed to be associated with gamma-ray emission. The detection of gamma rays from star-forming galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity (Ackermann et. al. 2012). Since star formation is known to scale with total infrared (8-1000 micrometers) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study we apply the relationships between gamma-ray luminosity and radio and IR luminosities derived in Ackermann et. al. 2012 to a sample of galaxy clusters from Ackermann et. al. 2010 in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted lower limits on gamma-ray emission that are within an order of magnitude of the upper limits derived in Ackermann et. al. 2010 based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cherenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.Comment: 17 pages, 2 figures, 2 tables. Minor revisions made to match version accepted to Ap

    Multiwavelength and parsec-scale properties of extragalactic jets

    Get PDF
    Extragalactic jets originating from the central supermassive black holes of active galaxies are powerful, highly relativistic plasma outflows, emitting light from the radio up to the gamma-ray regime. The details of their formation, composition and emission mechanisms are still not completely clear. The combination of high-resolution observations using very long baseline interferometry (VLBI) and multiwavelength monitoring provides the best insight into these objects. Here, such a combined study of sources of the TANAMI sample is presented, investigating the parsec-scale and high-energy properties. The TANAMI program is a multiwavelength monitoring program of a sample of the radio and gamma-ray brightest extragalactic jets in the southern sky, below -30deg declination. We obtain the first-ever VLBI images for most of the sources, providing crucial information on the jet kinematics and brightness distribution at milliarcsecond resolution. Two particular sources are discussed in detail: PMN J1603-4904, which can be classified either as an atypical blazar or a gamma-ray loud (young) radio galaxy, and Centaurus A, the nearest radio-loud active galaxy. The VLBI kinematics of the innermost parsec of Centaurus A's jet result in a consistent picture of an accelerated jet flow with a spine-sheath like structure.Comment: Doctoral Thesis Award Lecture 2015, AN 2016, 337,

    Measurement of redshift dependent cross correlation of HSC clusters and Fermi γ\gamma rays

    Get PDF
    The cross-correlation study of the unresolved γ\gamma-ray background (UGRB) with galaxy clusters has a potential to reveal the nature of the UGRB. In this paper, we perform a cross-correlation analysis between γ\gamma-ray data by the Fermi Large Area Telescope (Fermi-LAT) and a galaxy cluster catalogue from the Subaru Hyper Suprime-Cam (HSC) survey. The Subaru HSC cluster catalogue provides a wide and homogeneous large-scale structure distribution out to the high redshift at z=1.1z=1.1, which has not been accessible in previous cross-correlation studies. We conduct the cross-correlation analysis not only for clusters in the all redshift range (0.1<z<1.10.1 < z < 1.1) of the survey, but also for subsamples of clusters divided into redshift bins, the low redshift bin (0.1<z<0.60.1 < z < 0.6) and the high redshift bin (0.6<z<1.10.6 < z < 1.1), to utilize the wide redshift coverage of the cluster catalogue. We find the evidence of the cross-correlation signals with the significance of 2.0-2.3σ\sigma for all redshift and low-redshift cluster samples. On the other hand, for high-redshift clusters, we find the signal with weaker significance level (1.6-1.9σ\sigma). We also compare the observed cross-correlation functions with predictions of a theoretical model in which the UGRB originates from γ\gamma-ray emitters such as blazars, star-forming galaxies and radio galaxies. We find that the detected signal is consistent with the model prediction.Comment: 11 pages, 24 figures, accepted by MNRA

    Linking gamma-ray spectra of supernova remnants to the cosmic ray injection properties in the aftermath of supernovae

    Get PDF
    The acceleration times of the highest-energy particles which emit gamma-rays in young and middle-age SNRs are comparable with SNR age. If the number of particles starting acceleration was varying during early times after the supernova explosion then this variation should be reflected in the shape of the gamma-ray spectrum. We use the solution of the non-stationary equation for particle acceleration in order to analyze this effect. As a test case, we apply our method to describe gamma-rays from IC443. As a proxy of the IC443 parent supernova we consider SN1987A. First, we infer the time dependence of injection efficiency from evolution of the radio spectral index in SN1987A. Then, we use the inferred injection behavior to fit the gamma-ray spectrum of IC443. We show that the break in the proton spectrum needed to explain the gamma-ray emission is a natural consequence of the early variation of the cosmic ray injection, and that the very-high energy gamma-rays originate from particles which began acceleration during the first months after the supernova explosion. We conclude that the shape of the gamma-ray spectrum observed today in SNRs critically depends on the time variation of the cosmic ray injection process in the immediate post explosion phases. With the same model, we estimate also the possibility in the future to detect gamma-rays from SN 1987A.Comment: A&A, accepte

    Gamma Ray Bursts -- A radio perspective

    Get PDF
    Gamma-ray bursts (GRBs) are extremely energetic events at cosmological distances. They provide unique laboratory to investigate fundamental physical processes under extreme conditions. Due to extreme luminosities, GRBs are detectable at very high redshifts and potential tracers of cosmic star formation rate at early epoch. While the launch of {\it Swift} and {\it Fermi} has increased our understanding of GRBs tremendously, many new questions have opened up. Radio observations of GRBs uniquely probe the energetics and environments of the explosion. However, currently only 30\% of the bursts are detected in radio bands. Radio observations with upcoming sensitive telescopes will potentially increase the sample size significantly, and allow one to follow the individual bursts for a much longer duration and be able to answer some of the important issues related to true calorimetry, reverse shock emission and environments around the massive stars exploding as GRBs in the early Universe.Comment: To appear in Advances in Astronomy, special issue "Gamma-Ray Burst in Swift/Fermi Era and Beyond

    Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission

    Get PDF
    We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆L\star starburst, and L⋆L\star galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ\gamma-ray emission from nearby and starburst galaxies. We reproduce the γ\gamma-ray observations of dwarf and L⋆L\star galaxies with constant isotropic diffusion coefficient κ∼3×1029 cm2 s−1\kappa \sim 3\times 10^{29}\,{\rm cm^{2}\,s^{-1}}. Advection-only and streaming-only models produce order-of-magnitude too large γ\gamma-ray luminosities in dwarf and L⋆L\star galaxies. We show that in models that match the γ\gamma-ray observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ\gamma-ray emissivities. Models where CRs are ``trapped'' in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ\gamma-ray observations. For models with constant κ\kappa that match the γ\gamma-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA
    • …
    corecore