3,928 research outputs found

    The Distance to Nova V959 Mon from VLA Imaging

    Get PDF
    Determining reliable distances to classical novae is a challenging but crucial step in deriving their ejected masses and explosion energetics. Here we combine radio expansion measurements from the Karl G. Jansky Very Large Array with velocities derived from optical spectra to estimate an expansion parallax for nova V959 Mon, the first nova discovered through its gamma-ray emission. We spatially resolve the nova at frequencies of 4.5-36.5 GHz in nine different imaging epochs. The first five epochs cover the expansion of the ejecta from 2012 October to 2013 January, while the final four epochs span 2014 February to 2014 May. These observations correspond to days 126 through 199 and days 615 through 703 after the first detection of the nova. The images clearly show a non-spherical ejecta geometry. Utilizing ejecta velocities derived from 3D modelling of optical spectroscopy, the radio expansion implies a distance between 0.9 +/- 0.2 and 2.2 +/- 0.4 kpc, with a most probable distance of 1.4 +/- 0.4 kpc. This distance implies a gamma-ray luminosity much less than the prototype gamma-ray-detected nova, V407 Cyg, possibly due to the lack of a red giant companion in the V959 Mon system. V959 Mon also has a much lower gamma-ray luminosity than other classical novae detected in gamma-rays to date, indicating a range of at least a factor of 10 in the gamma-ray luminosities for these explosions.Comment: 11 pages, 8 figures, 3 tables, submitted to ApJ 2015-01-21, under revie

    Multiwavelength and parsec-scale properties of extragalactic jets

    Get PDF
    Extragalactic jets originating from the central supermassive black holes of active galaxies are powerful, highly relativistic plasma outflows, emitting light from the radio up to the gamma-ray regime. The details of their formation, composition and emission mechanisms are still not completely clear. The combination of high-resolution observations using very long baseline interferometry (VLBI) and multiwavelength monitoring provides the best insight into these objects. Here, such a combined study of sources of the TANAMI sample is presented, investigating the parsec-scale and high-energy properties. The TANAMI program is a multiwavelength monitoring program of a sample of the radio and gamma-ray brightest extragalactic jets in the southern sky, below -30deg declination. We obtain the first-ever VLBI images for most of the sources, providing crucial information on the jet kinematics and brightness distribution at milliarcsecond resolution. Two particular sources are discussed in detail: PMN J1603-4904, which can be classified either as an atypical blazar or a gamma-ray loud (young) radio galaxy, and Centaurus A, the nearest radio-loud active galaxy. The VLBI kinematics of the innermost parsec of Centaurus A's jet result in a consistent picture of an accelerated jet flow with a spine-sheath like structure.Comment: Doctoral Thesis Award Lecture 2015, AN 2016, 337,

    Fermi/LAT discovery of gamma-ray emission from a relativistic jet in the narrow-line quasar PMN J0948+0022

    Get PDF
    We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope of high-energy gamma-ray emission from the peculiar quasar PMN J0948+0022 (z=0.5846). The optical spectrum of this object exhibits rather narrow Hbeta (FWHM(Hbeta) ~ 1500 km s^-1), weak forbidden lines and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at high Eddington ratio. The radio loudness and variability of the compact radio core indicates the presence of a relativistic jet. Quasi simultaneous radio-optical-X-ray and gamma-ray observations are presented. Both radio and gamma-ray emission (observed over 5-months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broad band spectral energy distribution (SED) and, in particular, the gamma-ray spectrum measured by Fermi are similar to those of more powerful FSRQ. A comparison of the radio and gamma-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and gamma-ray power, with respect to other FSRQ. The physical parameters obtained from modelling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini (2008). We suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.Comment: 10 pages, 5 figures, accepted for publication on ApJ Main Journal. Corresponding author: L. Foschin

    Linking gamma-ray spectra of supernova remnants to the cosmic ray injection properties in the aftermath of supernovae

    Get PDF
    The acceleration times of the highest-energy particles which emit gamma-rays in young and middle-age SNRs are comparable with SNR age. If the number of particles starting acceleration was varying during early times after the supernova explosion then this variation should be reflected in the shape of the gamma-ray spectrum. We use the solution of the non-stationary equation for particle acceleration in order to analyze this effect. As a test case, we apply our method to describe gamma-rays from IC443. As a proxy of the IC443 parent supernova we consider SN1987A. First, we infer the time dependence of injection efficiency from evolution of the radio spectral index in SN1987A. Then, we use the inferred injection behavior to fit the gamma-ray spectrum of IC443. We show that the break in the proton spectrum needed to explain the gamma-ray emission is a natural consequence of the early variation of the cosmic ray injection, and that the very-high energy gamma-rays originate from particles which began acceleration during the first months after the supernova explosion. We conclude that the shape of the gamma-ray spectrum observed today in SNRs critically depends on the time variation of the cosmic ray injection process in the immediate post explosion phases. With the same model, we estimate also the possibility in the future to detect gamma-rays from SN 1987A.Comment: A&A, accepte

    News : 1/08 / Center for Financial Studies

    Get PDF
    • …
    corecore