5 research outputs found

    A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction

    Get PDF
    An early and reliable estimation of crop yield is essential in quantitative and financial evaluation at the field level for determining strategic plans in agricultural commodities for import-export policies and doubling farmer’s incomes. Crop yield predictions are carried out to estimate higher crop yield through the use of machine learning algorithms which are one of the challenging issues in the agricultural sector. Due to this developing significance of crop yield prediction, this article provides an exhaustive review on the use of machine learning algorithms to predict crop yield with special emphasis on palm oil yield prediction. Initially, the current status of palm oil yield around the world is presented, along with a brief discussion on the overview of widely used features and prediction algorithms. Then, the critical evaluation of the state-of-the-art machine learning-based crop yield prediction, machine learning application in the palm oil industry and comparative analysis of related studies are presented. Consequently, a detailed study of the advantages and difficulties related to machine learning-based crop yield prediction and proper identification of current and future challenges to the agricultural industry is presented. The potential solutions are additionally prescribed in order to alleviate existing problems in crop yield prediction. Since one of the major objectives of this study is to explore the future perspectives of machine learning-based palm oil yield prediction, the areas including application of remote sensing, plant’s growth and disease recognition, mapping and tree counting, optimum features and algorithms have been broadly discussed. Finally, a prospective architecture of machine learning-based palm oil yield prediction has been proposed based on the critical evaluation of existing related studies. This technology will fulfill its promise by performing new research challenges in the analysis of crop yield prediction and the development

    Advancing agricultural monitoring for improved yield estimations using SPOT-VGT and PROBA-V type remote sensing data

    Full text link
    Accurate and timely crop condition monitoring is crucial for food management and the economic development of any nation. However, accurately estimating crop yield from the field to global scales is a challenge. According to the global strategy of the World Bank, in order to improve national agricultural statistics, crop area, crop production, and crop yield are key variables that all countries should be able to provide. Crop yield assessment requires that both an estimation of the quantity of a product and the area provided for that product should be available. The definition seems simple; however, these measurements are time consuming and subject to error in many circumstances. Remote sensing is one of several methods used for crop yield estimation. The yield results from a combination of environmental factors, such as soil, weather, and farm management, which are responsible for the unique spectral signature of a crop captured by satellite images. Additionally, yield is an expression of the state, structure, and composition of the plant. Various indices, crop masks, and land observation sensors have been developed to remotely observe and control crops in different regions. This thesis focuses on how much low spatial resolution satellites, such as Project for On Board Autonomy Vegetation (PROBA V), can contribute to global crop monitoring by aiding the search for improved methods and datasets for better crop yield estimation. This thesis contains three chapters. The first chapter explores how an existing product, Dry Matter Productivity (DMP), that has been developed for Satellites Pour l’Observation de la Terre or Earth observing Satellites VeGeTation (SPOT VGT), and transferred to PROBA V, can be improved to more closely relate to yield anomalies across selected regions. This chapter also covers the testing of the contribution of stress factors to improve wheat and maize yield estimations. According to Monteith’s theory, crop biomass linearly correlates with the amount of Absorbed Photosynthetically Active Radiation (APAR) and constant Radiation Use Efficiency (RUE) downregulated by stress factors such as CO2, fertilization, temperature, and water stress. The objective of this chapter is to investigate the relative importance of these stress factors in relation to the regional biomass production and yield. The production efficiency model Copernicus Global Land Service Dry Matter Productivity (CGLS DMP), which follows Monteith’s theory, is modified and evaluated for common wheat and silage maize in France, Belgium, and Morocco using SPOT VGT for the 1999–2012 period. The correlations between the crop yield data and the cumulative modified DMP, CGLS DMP, Fraction of APAR (fAPAR), and Normalized Difference Vegetation Index (NDVI) values are analyzed for different crop growth stages. The best results are obtained when combinations of the most appropriate stress factors are included for each selected region, and the modified DMP during the reproductive stage is accumulated. Though no single solution can demonstrate an improvement of the global product, the findings support an extension of the methodology to other regions of the world. The second chapter demonstrates how PROBA V can be used effectively for crop identification mapping by utilizing spectral matching techniques and phenological characteristics of different crop types. The study sites are agricultural areas spread across the globe, located in Flanders (Belgium), Sria (Russia), Kyiv (Ukraine), and Sao Paulo (Brazil). The data are collected for the 2014–2015 season. For each pure pixel within a field, the NDVI profile of the crop type for its growing season is matched with the reference NDVI profile. Three temporal windows are tested within the growing season: green up to senescence, green up to dormancy, and minimum NDVI at the beginning of the growing season to minimum NDVI at the end of the growing season. In order of importance, the crop phenological development period, parcel size, shorter time window, number of ground truth parcels, and crop calendar similarity are the main reasons behind the differences between the results. The methodology described in this chapter demonstrates the potentials and limitations of using 100 m PROBA V with revisiting frequency every 5 days in crop identification across different regions of the world. The final chapter explores the trade off between the different spatial resolutions provided by PROBA V products versus the temporal frequency and, additionally, explores the use of thermal time to improve statistical yield estimations. The ground data are winter wheat yields at the field level for 39 fields across Northern France during one growing season 2014–2015. An asymmetric double sigmoid function is fitted, and the NDVI values are integrated over thermal time and over calendar time for the central pixel of the field, exploring different thresholds to mark the start and end of the cropping season. The integrated NDVI values with different NDVI thresholds are used as a proxy for yield. In addition, a pixel purity analysis is performed for different purity thresholds at the 100 m, 300 m, and 1 km resolutions. The findings demonstrate that while estimating winter wheat yields at the field level with pure pixels from PROBA V products, the best correlation is obtained with a 100 m resolution product. However, several fields must be omitted due to the lack of observations throughout the growing season with the 100 m resolution dataset, as this product has a lower temporal resolution compared to 300 m and 1 km. This thesis is a modest contribution to the remote sensing and data analysis field with its own merits, in particular with respect to PROBA V. The experiments provide interesting insight into the PROBA V dataset at 1 km, 300 m, and 100 m resolutions. Specifically, the results show that 100 m spatial resolution imagery could be used effectively and advantageously in agricultural crop monitoring and crop identification at local – field level – and regional – the administrative regions defined by the national governments – levels. Furthermore, this thesis discusses the limitations of using a low resolution satellite, such as the PROBA V 100 m dataset, in crop monitoring and identification. Also, several recommendations are made for space agencies that can be used when designing the new generation of satellites

    The ability of sun-induced chlorophyll fluorescence from OCO-2 and MODIS-EVI to monitor spatial variations of soybean and maize yields in the Midwestern USA

    No full text
    Satellite sun-induced chlorophyll fluorescence (SIF) has emerged as a promising tool for monitoring growing conditions and productivity of vegetation. However, it still remains unclear the ability of satellite SIF data to predict crop yields at the regional scale, comparing to widely used satellite vegetation index (VI), such as the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). Additionally, few attempts have been made to verify if SIF products from the new Orbiting Carbon Observatory-2 (OCO-2) satellite could be applied for regional corn and soybean yield estimates. With the deep neural networks (DNN) approach, this study investigated the ability of OCO-2 SIF, MODIS EVI, and climate data to estimate county-level corn and soybean yields in the U.S. Corn Belt. Monthly mean and maximum SIF and MODIS EVI during the peak growing season showed similar correlations with corn and soybean yields. The DNNs with SIF as predictors were able to estimate corn and soybean yields well but performed poorer than MODIS EVI and climate variables-based DNNs. The performance of SIF and MODIS EVI-based DNNs varied with the areal dominance of crops while that of climate-based DNNs exhibited less spatial variability. SIF data could provide useful supplementary information to MODIS EVI and climatic variables for improving estimates of crop yields. MODIS EVI and climate predictors (e.g., VPD and temperature) during the peak growing season (from June to August) played important roles in predicting yields of corn and soybean in the Midwestern 12 states in the U.S. The results highlighted the benefit of combining data from both satellite and climate sources in crop yield estimation. Additionally, this study showed the potential of adding SIF in crop yield prediction despite the small improvement of model performances, which might result from the limitation of current available SIF products. The framework of this study could be applied to different regions and other types of crops to employ deep learning for crop yield forecasting by combining different types of remote sensing data (such as OCO-2 SIF and MODIS EVI) and climate data.PRIFPRI3; ISI; CRP5; Capacity Strengthening; 1 Fostering Climate-Resilient and Sustainable Food SupplyEPTDCGIAR Research Program on Water, Land and Ecosystems (WLE

    The Ability of Sun-Induced Chlorophyll Fluorescence From OCO-2 and MODIS-EVI to Monitor Spatial Variations of Soybean and Maize Yields in the Midwestern USA

    No full text
    Satellite sun-induced chlorophyll fluorescence (SIF) has emerged as a promising tool for monitoring growing conditions and productivity of vegetation. However, it still remains unclear the ability of satellite SIF data to predict crop yields at the regional scale, comparing to widely used satellite vegetation index (VI), such as the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). Additionally, few attempts have been made to verify if SIF products from the new Orbiting Carbon Observatory-2 (OCO-2) satellite could be applied for regional corn and soybean yield estimates. With the deep neural networks (DNN) approach, this study investigated the ability of OCO-2 SIF, MODIS EVI, and climate data to estimate county-level corn and soybean yields in the U.S. Corn Belt. Monthly mean and maximum SIF and MODIS EVI during the peak growing season showed similar correlations with corn and soybean yields. The DNNs with SIF as predictors were able to estimate corn and soybean yields well but performed poorer than MODIS EVI and climate variables-based DNNs. The performance of SIF and MODIS EVI-based DNNs varied with the areal dominance of crops while that of climate-based DNNs exhibited less spatial variability. SIF data could provide useful supplementary information to MODIS EVI and climatic variables for improving estimates of crop yields. MODIS EVI and climate predictors (e.g., VPD and temperature) during the peak growing season (from June to August) played important roles in predicting yields of corn and soybean in the Midwestern 12 states in the U.S. The results highlighted the benefit of combining data from both satellite and climate sources in crop yield estimation. Additionally, this study showed the potential of adding SIF in crop yield prediction despite the small improvement of model performances, which might result from the limitation of current available SIF products. The framework of this study could be applied to different regions and other types of crops to employ deep learning for crop yield forecasting by combining different types of remote sensing data (such as OCO-2 SIF and MODIS EVI) and climate data
    corecore