105,050 research outputs found

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale

    A review of literature on communication skills development (CSD) in the engineering curriculum

    Get PDF
    Engineering education has expanded recently to include emphasis on the development of some very specific non-technical attributes that match a strong technical base to produce well-rounded engineering graduates who are flexible and adaptable to suit the constantly developing and changing requirements of the workplace. These non technical skills include communication skills, the ability to function in teams, knowledge of societal and contemporary issues, development of global perspective, and ethics awareness. A great importance of these abilities to engineering education has emerged over the last decade even within the international and local scene. Within the Malaysian context, the Engineering Accreditation Councilñ€ℱs (EAC) Engineering Program Accreditation Manual(BEM, 2007) , outlines ten learning outcomes that encompasses both the technical and non technical skills which are considered essential for graduating engineers. Similarly, the Accreditation Board of Engineering and Technology (ABET) Criterion 3 (ABET, 2000), outlines eleven criterion which targeted many of these as essential program outcomes in order for engineering programs to be accredited and which are seen as critical for the success in the twenty first century. Communication skills development(CSD) is one of the outcomes required by an undergraduate engineering program in the Engineering Accreditation Council (EAC) for Institutions of Higher Learning (IHL) in Malaysia as well as in the ABET Engineering Criteria 2000 (ABET, 2000). CSD is essential for an engineer who aspires to carry out his/her professional practice in the global arena and especially in the English language. With an increasingly global economy, the Malaysian education system must produce graduates who can communicate effectively in English. Otherwise, it would lose one of its vital selling points for foreign investors to ensure that skilled labor force are sufficient to support internationally competitive commerce and industry and to provide individuals with opportunities to optimize their potentials (Muhammad Rashid bin Rajuddin, 2006; Riemer, 2002)

    Improving root cause analysis through the integration of PLM systems with cross supply chain maintenance data

    Get PDF
    The purpose of this paper is to demonstrate a system architecture for integrating Product Lifecycle Management (PLM) systems with cross supply chain maintenance information to support root-cause analysis. By integrating product-data from PLM systems with warranty claims, vehicle diagnostics and technical publications, engineers were able to improve the root-cause analysis and close the information gaps. Data collection was achieved via in-depth semi-structured interviews and workshops with experts from the automotive sector. Unified Modelling Language (UML) diagrams were used to design the system architecture proposed. A user scenario is also presented to demonstrate the functionality of the system

    Effects of the Interactions Between LPS and BIM on Workflow in Two Building Design Projects

    Get PDF
    Variability in design workflow causes delays and undermines the performance of building projects. As lean processes, the Last Planner System (LPS) and Building Information Modeling (BIM) can improve workflow in building projects through features that reduce waste. Since its introduction, BIM has had significant positive influence on workflow in building design projects, but these have been rarely considered in combination with LPS. This paper is part of a postgraduate research focusing on the implementation of LPS weekly work plans in two BIM-based building design projects to achieve better workflow. It reports on the interactions between lean principles of LPS and BIM functionalities in two building design projects that, from the perspective of an interaction matrix developed by Sacks et al. (2010a), promote workflow

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    Self-tuning diagnosis of routine alarms in rotating plant items

    Get PDF
    Condition monitoring of rotating plant items in the energy generation industry is often achieved through examination of vibration signals. Engineers use this data to monitor the operation of turbine generators, gas circulators and other key plant assets. A common approach in such monitoring is to trigger an alarm when a vibration deviates from a predefined envelope of normal operation. This limit-based approach, however, generates a large volume of alarms not indicative of system damage or concern, such as operational transients that result in temporary increases in vibration. In the nuclear generation context, all alarms on rotating plant assets must be analysed and subjected to auditable review. The analysis of these alarms is often undertaken manually, on a case- by-case basis, but recent developments in monitoring research have brought forward the use of intelligent systems techniques to automate parts of this process. A knowledge- based system (KBS) has been developed to automatically analyse routine alarms, where the underlying cause can be attributed to observable operational changes. The initialisation and ongoing calibration of such systems, however, is a problem, as normal machine state is not uniform throughout asset life due to maintenance procedures and the wear of components. In addition, different machines will exhibit differing vibro- acoustic dynamics. This paper proposes a self-tuning knowledge-driven analysis system for routine alarm diagnosis across the key rotating plant items within the nuclear context common to the UK. Such a system has the ability to automatically infer the causes of routine alarms, and provide auditable reports to the engineering staff

    The development of a post-test diagnostic system for rocket engines

    Get PDF
    An effort was undertaken by NASA to develop an automated post-test, post-flight diagnostic system for rocket engines. The automated system is designed to be generic and to automate the rocket engine data review process. A modular, distributed architecture with a generic software core was chosen to meet the design requirements. The diagnostic system is initially being applied to the Space Shuttle Main Engine data review process. The system modules currently under development are the session/message manager, and portions of the applications section, the component analysis section, and the intelligent knowledge server. An overview is presented of a rocket engine data review process, the design requirements and guidelines, the architecture and modules, and the projected benefits of the automated diagnostic system

    Support for energy-oriented design in the Australian context

    Get PDF
    There is a need for decision support tools that integrate energy simulation into early design in the context of Australian practice. Despite the proliferation of simulation programs in the last decade, there are no ready-to-use applications that cater specifically for the Australian climate and regulations. Furthermore, the majority of existing tools focus on achieving interaction with the design domain through model-based interoperability, and largely overlook the issue of process integration. This paper proposes an energy-oriented design environment that both accommodates the Australian context and provides interactive and iterative information exchanges that facilitate feedback between domains. It then presents the structure for DEEPA, an openly customisable system that couples parametric modelling and energy simulation software as a means of developing a decision support tool to allow designers to rapidly and flexibly assess the performance of early design alternatives. Finally, it discusses the benefits of developing a dynamic and concurrent performance evaluation process that parallels the characteristics and relationships of the design process

    Designing as Interpretation

    Get PDF
    The paper suggests an interpretative approach to the empirical study of design processes. Design processes are conceived as social processes of interpretation and construction of meaning, and potentially of context generation. In contrast to models which conceive designing as a goal-directed process, an interpretative approach suggests a methodological reorientation. It assumes that design goals are more or less incomplete and vague at the beginning of a design process and are interpreted in contexts and in part are created by designers in the design process on the basis of their experience, embodied skills, and practices. The interpretative paradigm in design research seeks to observe, investigate, and describe practices that designers use in the process. Rather than attempting to determine and prescribe how practitioners ought to do their work, the research question is on how work is actually done - how interpretation is achieved by designers in particular design processes. An extract is analysed in some detail in the paper. These data are taken from the transcript of a case study of a design process in practice. Sociological and socio-linguistic (‘sensitizing’) concepts such as frames and contexts are adopted to describe and analyze some practices observed in the episodes. The paper focuses on an aspect of designing – various forms of involvement and stances designers’ take on in the meaning making process of interpretative design work. Interpretative analysis takes into account designers’ alignments which constitute “participation frameworks” and ground designers’ multimodal practices in different media (language, drawing, gesture). Goffman’s (1981) concept of “footing” is used to reveal more subtle shifts in stances that designers take in designing. Investigation of referential practices designers use in some utterances in the observed design conversation suggests that designers step into, displace, and position themselves in transformed, “keyed” situations to experience the solicitations of design situations more directly and to take the role of others as well as the role of objects. These practices appear to be part of designers’ ability to construct meaning by establishing perspectives and getting “maximal grip” on design situations so as to exert their skills. Analysis of types of stances designers take in an observed design process, some of which addressed in the paper, may provide a way to describe an aspect of designers’ artistry and to characterize the particularities of unique design processes. The suggested approach is intended to contribute to a better theoretical understanding of designing and to the methodology of design research as an ‘epistemology of practice’. Interpretative analysis also aims to provide description of designers’ practices which may, as its practical benefits, contribute to ‘the reflective turn’ in design research. Keywords: Design Research Methodology; Design Practices; Framing; Case Study</p

    Survey Simulations of a New Near-Earth Asteroid Detection System

    Get PDF
    We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth-Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes >=140 m in effective spherical diameter were simulated using recent determinations of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of new large-format 10 um detector arrays capable of operating at ~35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer and WISE data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth-Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next-generation NEA survey.Comment: AJ accepted; corrected typ
    • 

    corecore