34 research outputs found

    Using a new monitoring framework for Regional Councils to assess the integrity of prioritised ecosystems in Hawke’s Bay farmland : A thesis submitted in partial fulfilment of the requirements for the Degree of Masters of Applied Science at Lincoln University

    Get PDF
    The long-term sustainability of biodiversity in small native forest fragments on privately-owned lowland rural land is threatened by agricultural intensification, introduced pests, inadequate fencing, and species-area effects. Biodiversity monitoring of private land plays an essential role in protecting, and enhancing, the biodiversity that remains. This is important because these private forest fragments can contain rare and critically threatened species, and are reservoirs for indigenous species that are otherwise scarce in these landscapes. Regional Councils are increasingly required to work with landowners to monitor the biodiversity in these habitats to inform management and conservation. However, there has been no standard framework that councils follow for doing this. Regional councils contracted Manaaki Whenua–Landcare Research to develop a Tier 2 Monitoring Framework for standardised biodiversity monitoring in 2020. I have trialled this framework to survey vegetation, bird and mammal biodiversity at a selection of 10 ecologically prioritised native forest sites across Hawke’s Bay. My research offers insights into the framework’s ability to measure ecological change, by using it to assess the ecological differences between fenced and unfenced forests. Vascular plant species richness was affected by reserve fencing, with fewer natives and many more naturalised species present at unfenced sites. Within sites, there were much more native individuals across all height tiers. For birds, it was found that fencing determined species composition, whereby there was a greater species richness and detections of naturalised bird in unfenced areas, and greater detections of native birds in fenced sites. I also investigate autonomous recordings compared to 5-minute bird counts, concluding that although they both have their merits, greater detection and unbiasedness occurs using autonomous recording devices. I will offer my reflections on the suitability of this proposed framework for more widespread regional council use and offer recommendations. My findings document the status of lowland biodiversity at these sites and provide a valuable baseline for future monitoring of ecological change in lowland forest fragments in Hawke’s Bay

    IoT-laitteiden datayhteyden automaattinen määrittely matkapuhelinverkoissa

    Get PDF
    Cellular networks have existed for almost forty years. During the course of their history, they have transformed from wireless voice communication providers to wireless network providers. Nowadays mobile broadband data forms the bulk of the cellular data transfer which was a staggering 14 exabytes per month in year 2017, or 2.9 gigabytes per smartphone per month. The Internet of Things is changing this connectivity landscape by introducing devices in the millions but with scarce individual resources and data usage. However, there are some challenges related to cellular data connections in constrained IoT devices. This thesis identifies those challenges and proposes solutions to overcome them for enabling simpler cellular data connectivity. We first present the technical challenges and solutions found in today’s cellular IoT devices. We then present a proof of concept prototype that realizes automatic cellular connectivity in a very constrained IoT device. The prototype is capable of connecting to a management system and reporting sensor readings without requiring any user interaction. Besides recognizing important improvements in the next generation of cellular IoT technology, the thesis concludes with suggestions on how to improve the usability of programming interfaces for cellular connectivity.Lähes neljäkymmenvuotisen historiansa aikana atkapuhelinverkot ovat muuttuneet puheen välittäjistä langattomaksi dataverkoksi. Nykyään langaton laajakaista muodostaa suuren osan matkapuhelinverkoissa siirretystä datasta, jota oli 14 exatavua kuukaudessa vuonna 2017. Esineiden Internet tuo verkkoon miljoonia laitteita joiden yksittäinen datansiirron tarve on vähäinen. Matkapuhelinverkon datayhteyden käyttö ei kuitenkaan ole ongelmatonta rajoittuneissa Esineiden Internetin laitteissa. Tämä diplomityö tunnistaa ja luokittelee näitä teknisiä haasteita ja ehdottaa ratkaisuja niihin. Esittelemme prototyypin joka toteuttaa automaatisen matkapuhelinverkon datayhteyden luonnin rajoittuneessa laitteessa. Prototyyppi ottaa yhteyden hallintajärjestelmään ja raportoi mittausdataa ilman käyttäjältä vaadittavia toimia. Johtopäätöksenä tämä diplomityö esittää parannuksia tehtäväksi matkapuhelinverkkojen datayhteyksien ohjelmointirajapintoihin niitä käyttävissä laitteissa. Löysimme myös tärkeitä parannuksia joita on jo tehty tulevan sukupolven matkapuhelinverkon määrittelyssä

    OFMC: A symbolic model checker for security protocols

    Get PDF
    We present the on-the-fly model checker OFMC, a tool that combines two ideas for analyzing security protocols based on lazy, demand-driven search. The first is the use of lazy data types as a simple way of building efficient on-the-fly model checkers for protocols with very large, or even infinite, state spaces. The second is the integration of symbolic techniques and optimizations for modeling a lazy Dolev-Yao intruder whose actions are generated in a demand-driven way. We present both techniques, along with optimizations and proofs of correctness and completeness. Our tool is state of the art in terms of both coverage and performance. For example, it finds all known attacks and discovers a new one in a test suite of 38 protocols from the Clark/Jacob library in a few seconds of CPU time for the entire suite. We also give examples demonstrating how our tool scales to, and finds errors in, large industrial-strength protocol

    Performance Evaluations of Cryptographic Protocols Verification Tools Dealing with Algebraic Properties

    Get PDF
    International audienceThere exist several automatic verification tools of cryptographic protocols, but only few of them are able to check protocols in presence of algebraic properties. Most of these tools are dealing either with Exclusive-Or (XOR) and exponentiation properties, so-called Diffie-Hellman (DH). In the last few years, the number of these tools increased and some existing tools have been updated. Our aim is to compare their performances by analysing a selection of cryptographic protocols using XOR and DH. We compare execution time and memory consumption for different versions of the following tools OFMC, CL-Atse, Scyther, Tamarin, TA4SP, and extensions of ProVerif (XOR-ProVerif and DH-ProVerif). Our evaluation shows that in most of the cases the new versions of the tools are faster but consume more memory. We also show how the new tools: Tamarin, Scyther and TA4SP, can be compared to previous ones. We also discover and understand for the protocol IKEv2-DS a difference of modelling by the authors of different tools, which leads to different security results. Finally, for Exclusive-Or and Diffie-Hellman properties, we construct two families of protocols P xori and P dhi that allow us to clearly see for the first time the impact of the number of operators and variables in the tools' performances

    Modelling the incubation microclimate to predict offspring sex ratios and hatching phenology in tuatara (Sphenodon punctatus)

    No full text
    Successful conservation of terrestrial biodiversity requires understanding and predicting the impacts of rapid climate warming on the suitability of both current and potential future habitats. Most predictions of range shifts and other population-scale effects of climate change rely to some extent on statistical links between a species' known geographical distribution and the suite of environmental conditions experienced within that space. However, species' responses to climate change are likely to be more complex than can be represented by the projection of current species-environment relationships into unknown environments. An important goal in biodiversity conservation is the development of quantitative tools with which to assess habitat suitability independently of distributions. In populations of oviparous species, climate change and habitat modification may have distinct effects on different life stages. Temperatures that are well within the thermal tolerance range of adults, for example, may affect embryonic development rates, hatching phenology, or offspring survival and phenotype. I examined how environmental variation may affect the thermal suitability of habitat for facilitating embryonic development and maintaining balanced sex ratios in tuatara (Sphenodon punctatus), an endemic New Zealand reptile with temperature-dependent sex determination (TSD). Once widespread throughout New Zealand, populations are now restricted to offshore islands and fenced mainland sanctuaries, though establishment of additional populations via translocation is ongoing. Due to intensive conservation efforts, tuatara are not classified as an endangered species, but, like other species in which hatchling sex is determined by the incubation environment, populations are potentially at risk from the detrimental effects of sex-ratio bias. I conducted two seasons of field work on the island of Takapourewa to quantify the relationship between rapid vegetation succession and selection of nesting areas. I then used a variety of predictive models to link data on nesting behaviour collected in the field with the microclimate conditions experienced by nesting female tuatara and developing embryos. Using mechanistically modelled soil temperature data, I generated predictions of incubation temperatures, offspring sex ratios, and hatching dates for two populations of tuatara on environmentally distinct islands, Takapourewa and Hauturu, under current and projected future climate scenarios. Finally, I classified the thermal suitability of sites on Hauturu for facilitating successful embryonic development and created geospatial surfaces defining suitable nesting locations adjacent to tuatara habitats. Offspring sex ratios on both islands are unlikely to become male-biased if the magnitude of climate warming observed over the next century more closely matches the minimum, rather than the maximum, projected warming scenario. On Takapourewa, the timing of nesting will be critical in determining whether sex ratios become male-biased under a scenario of maximum climate warming. Earlier nesting may also lead to shifts in hatching phenology under either scenario of climate warming. Warmer annual temperatures on Hauturu are more likely to lead to heavily male-biased offspring sex ratios under the maximum warming scenario. Female tuatara on Hauturu do not need to travel away from their current habitats to locate suitable nesting sites. Monitoring the population to quantify nesting behaviour on the island will be important for determining whether females' choices of incubation microclimates can compensate for the sex ratio-biasing effects of climate change

    Design and Validation of a Secured Tunnel in the Automatic Multicast Tunneling (AMT) Environment

    Get PDF
    IP multicasting is a communication mechanism in which data are communicated from a server to a set of clients who are interested in receiving those data. Any client can dynamically enter or leave the communication. The main problem of this system is that every client that is interested in receiving the multicast data has to be in a multicast enabled network. The Network Working Group at the Internet Engineering Task Force (IETF) has come up with a solution to this problem. They have developed a protocol named Automatic Multicast Tunneling (AMT). This protocol offers a mechanism to enable the unicast-only clients to join and receive multicast data from a multicast enabled region through an AMT tunnel, which is formed between the two intermediate participants named Gateway and Relay. However, AMT does not provide any Participant Access Control (PAC). Malla has designed an architecture for adding PAC at the receiver’s end in the AMT environment. His work is based on the assumption that the AMT tunnel is secure and the tunnel can recognize and pass the additional message types that his design requires. We have designed the solution to secure the AMT tunnel. We also defined the additional message types. Lastly, we validated our work using the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool to ensure that our design is secure

    Contribution to design a communication framework for vehicular ad hoc networks in urban scenarios

    Get PDF
    The constant mobility of people, the growing need to be always connected, the large number of vehicles that nowadays can be found in the roads and the advances in technology make Vehicular Ad hoc Networks (VANETs) be a major area of research. Vehicular Ad hoc Networks are a special type of wireless Mobile Ad hoc Networks (MANETs), which allow a group of mobile nodes configure a temporary network and maintain it without the need of a fixed infrastructure. A vehicular network presents some specific characteristics, as the very high speed of nodes. Due to this high speed the topology changes are frequent and the communication links may last only a few seconds. Smart cities are now a reality and have a direct relationship with vehicular networks. With the help of existing infrastructure such as traffic lights, we propose a scheme to update and analyse traffic density and a warning system to spread alert messages. With this, traffic lights assist vehicular networks to take proper decisions. This would ensure less congested streets. It would also be possible that the routing protocol forwards data packets to vehicles on streets with enough neighbours to increase the possibility of delivering the packets to destination. Sharing updated, reliable and real-time information, about traffic conditions, weather or security alerts, increases the need of algorithms for the dissemination of information that take into account the main beneffits and constraints of these networks. For all this, routing protocols for vehicular networks have the difficult task to select and establish transmission links to send the data packets from source to destination through multiple nodes using intermediate vehicles efficiently. The main objective of this thesis is to provide improvements in the communication framework for vehicular networks to improve decisions to select next hops in the moment to send information, in this way improving the exchange of information to provide suitable communication to minimize accidents, reduce congestion, optimize resources for emergencies, etc. Also, we include intelligence to vehicles at the moment to take routing decisions. Making them map-aware, being conscious of the presence of buildings and other obstacles in urban environments. Furthermore, our proposal considers the decision to store packets for a maximum time until finding other neighbouring nodes to forward the packets before discarding them. For this, we propose a protocol that considers multiple metrics that we call MMMR (A Multimetric, Map-Aware Routing Protocol ). MMMR is a protocol based on geographical knowledge of the environment and vehicle location. The metrics considered are the distance, the density of vehicles in transmission range, the available bandwidth and the future trajectory of the neighbouring nodes. This allows us to have a complete view of the vehicular scenario to anticipate the driver about possible changes that may occur. Thus, a node can select a node among all its neighbours, which is the best option to increase the likelihood of successful packet delivery, minimizing time and offering a level of quality and service. In the same way, being aware of the increase of information in wireless environments, we analyse the possibility of offering anonymity services. We include a mechanism of anonymity in routing protocols based on the Crowd algorithm, which uses the idea of hiding the original source of a packet. This allowed us to add some level of anonymity on VANET routing protocols. The analytical modeling of the available bandwidth between nodes in a VANET, the use of city infrastructure in a smart way, the forwarding selection in data routing byvehicles and the provision of anonymity in communications, are issues that have been addressed in this PhD thesis. In our research work we provide contributions to improve the communication framework for Vehicular Ad hoc Networks obtaining benefits toenhance the everyday of the population.La movilidad constante de las personas y la creciente necesidad de estar conectados en todo momento ha hecho de las redes vehiculares un área cuyo interés ha ido en aumento. La gran cantidad de vehículos que hay en la actualidad, y los avances tecnológicos han hecho de las redes vehiculares (VANETS, Vehicular Ad hoc Networks) un gran campo de investigación. Las redes vehiculares son un tipo especial de redes móviles ad hoc inalámbricas, las cuales, al igual que las redes MANET (Mobile Ad hoc Networks), permiten a un grupo de nodos móviles tanto configurar como mantener una red temporal por si mismos sin la necesidad de una infraestructura fija. Las redes vehiculares presentan algunas características muy representativas, por ejemplo, la alta velocidad que pueden alcanzar los nodos, en este caso vehículos. Debido a esta alta velocidad la topología cambia frecuentemente y la duración de los enlaces de comunicación puede ser de unos pocos segundos. Estas redes tienen una amplia área de aplicación, pudiendo tener comunicación entre los mismos nodos (V2V) o entre los vehículos y una infraestructura fija (V2I). Uno de los principales desafíos existentes en las VANET es la seguridad vial donde el gobierno y fabricantes de automóviles han centrado principalmente sus esfuerzos. Gracias a la rápida evolución de las tecnologías de comunicación inalámbrica los investigadores han logrado introducir las redes vehiculares dentro de las comunicaciones diarias permitiendo una amplia variedad de servicios para ofrecer. Las ciudades inteligentes son ahora una realidad y tienen una relación directa con las redes vehiculares. Con la ayuda de la infraestructura existente, como semáforos, se propone un sistema de análisis de densidad de tráfico y mensajes de alerta. Con esto, los semáforos ayudan a la red vehicular en la toma de decisiones. Así se logrará disponer de calles menos congestionadas para hacer una circulación más fluida (lo cual disminuye la contaminación). Además, sería posible que el protocolo de encaminamiento de datos elija vehículos en calles con suficientes vecinos para incrementar la posibilidad de entregar los paquetes al destino (minimizando pérdidas de información). El compartir información actualizada, confiable y en tiempo real sobre el estado del tráfico, clima o alertas de seguridad, aumenta la necesidad de algoritmos de difusión de la información que consideren los principales beneficios y restricciones de estas redes. Así mismo, considerar servicios críticos que necesiten un nivel de calidad y servicio es otro desafío importante. Por todo esto, un protocolo de encaminamiento para este tipo de redes tiene la difícil tarea de seleccionar y establecer enlaces de transmisión para enviar los datos desde el origen hacia el destino vía múltiples nodos utilizando vehículos intermedios de una manera eficiente. El principal objetivo de esta tesis es ofrecer mejoras en los sistemas de comunicación vehicular que mejoren la toma de decisiones en el momento de realizar el envío de la información, con lo cual se mejora el intercambio de información para poder ofrecer comunicación oportuna que minimice accidentes, reduzca atascos, optimice los recursos destinados a emergencias, etc. Así mismo, incluimos más inteligencia a los coches en el momento de tomar decisiones de encaminamiento de paquetes. Haciéndolos conscientes de la presencia de edificios y otros obstáculos en los entornos urbanos. Así como tomar la decisión de guardar paquetes durante un tiempo máximo de modo que se encuentre otros nodos vecinos para encaminar paquetes de información antes de descartarlo. Para esto, proponemos un protocolo basado en múltiples métricas (MMMR, A Multimetric, Map-aware Routing Protocol ) que es un protocolo geográfio basado en el conocimiento del entorno y localización de los vehículos. Las métricas consideradas son la distancia, la densidad de vehículos en el área de transmisión, el ancho de banda disponible y la trayectoria futura de los nodos vecinos. Esto nos permite tener una visión completa del escenario vehicular y anticiparnos a los posibles cambios que puedan suceder. Así, un nodo podrá seleccionar aquel nodo entre todos sus vecinos posibles que sea la mejor opción para incrementar la posibilidad de entrega exitosa de paquetes, minimizando tiempos y ofreciendo un cierto nivel de calidad y servicio. De la misma manera, conscientes del incremento de información que circula por medios inalámbricos, se analizó la posibilidad de servicios de anonimato. Incluimos pues un mecanismo de anonimato en protocolos de encaminamiento basado en el algoritmo Crowd, que se basa en la idea de ocultar la fuente original de un paquete. Esto nos permitió añadir cierto nivel de anonimato que pueden ofrecer los protocolos de encaminamiento. El modelado analítico del ancho de banda disponible entre nodos de una VANET, el uso de la infraestructura de la ciudad de una manera inteligente, la adecuada toma de decisiones de encaminamiento de datos por parte de los vehículos y la disposición de anonimato en las comunicaciones, son problemas que han sido abordados en este trabajo de tesis doctoral que ofrece contribuciones a la mejora de las comunicaciones en redes vehiculares en entornos urbanos aportando beneficios en el desarrollo de la vida diaria de la población

    A system for computational analysis and reconstruction of 3D comminuted bone fractures

    Get PDF
    High energy impacts at joint locations often generate highly fragmented, or comminuted bone fractures. A leading current approach for treatment requires physicians qualitatively to classify the fracture to one of four possible fracture severity cases. Each case then has a sequence of best-practices for obtaining the best possible prognosis for the patient. It has been observed that qualitative evaluation of fracture severity by physicians can vary significantly which can lead to potential mis-classification and mis-treatment of these fracture cases. Major indicators of fracture severity are (i) fracture surface area, i.e., how much surface area was generated when the bone broke apart and (ii) dispersion, i.e., how far the fragments have rotated and translated from their original anatomic positions. Work in this dissertation develops computational tools that solve the bone puzzle-solving problem automatically or semi-automatically and extract previously unavailable quantitative information for these indicators from each bone fragment that are intended to assist physicians in making a more accurate and reliable fracture severity classification. The system applies novel three-dimensional (3D) puzzle-solving algorithms to identify the fracture fragments in the CT image data and piece them back together in a virtual environment. Doing so provides quantitative values for both fracture surface area and dispersion that reduce variability in fracture severity classifications and prevent mis-diagnosis for fracture cases that may be difficult to qualitatively classify using traditional approaches. This dissertation describes the system, the underlying algorithms and demonstrates the virtual reconstruction results and quantitative analysis of comminuted bone fractures from six clinical cases

    Reasoning about recognizability in security protocols

    Get PDF
    Although verifying a message has long been recognized as an important concept, which has been used explicitly or implicitly in security protocol analysis, there is no consensus on its exact meaning. Such a lack of formal treatment of the concept makes it extremely difficult to evaluate the vulnerability of security protocols. This dissertation offers a precise answer to the question: What is meant by saying that a message can be "verified''? The core technical innovation is a third notion of knowledge in security protocols -- recognizability. It can be considered as intermediate between deduction and static equivalence, two classical knowledge notions in security protocols. We believe that the notion of recognizability sheds important lights on the study of security protocols. More specifically, this thesis makes four contributions. First, we develop a knowledge model to capture an agent's cognitive ability to understand messages. Thanks to a clear distinction between de re/dicto interpretations of a message, the knowledge model unifies both computational and symbolic views of cryptography gracefully. Second, we propose a new notion of knowledge in security protocols -- recognizability -- to fully capture one's ability or inability to cope with potentially ambiguous messages. A terminating procedure is given to decide recognizability under the standard Dolev-Yao model. Third, we establish a faithful view of the attacker based on recognizability. This yields new insights into protocol compilations and protocol implementations. Specifically, we identify two types of attacks that can be thawed through adjusting the protocol implementation; and show that an ideal implementation that corresponds to the intended protocol semantics does not always exist. Overall, the obtained attacker's view provides a path to more secure protocol designs and implementations. Fourth, we use recognizability to provide a new perspective on type-flaw attacks. Unlike most previous approaches that have focused on heuristic schemes to detect or prevent type-flaw attacks, our approach exposes the enabling factors of such attacks. Similarly, we apply the notion of recognizability to analyze off-line guessing attacks. Without enumerating rules to determine whether a guess can be "verified'', we derive a new definition based on recognizability to fully capture the attacker's guessing capabilities. This definition offers a general framework to reason about guessing attacks in a symbolic setting, independent of specific intruder models. We show how the framework can be used to analyze both passive and active guessing attacks

    Formal Validation of Security Properties of AMT's Three-Way Handshake

    Get PDF
    Multicasting is a technique for transmitting the same information to multiple receivers over IP networks. It is often deployed on streaming media applications over the Internet and private networks. The biggest problem multicast introduces today is that it is an all or nothing solution. Every element on the path between the source and the receivers (links, routers, firewalls) requires multicast protocols to be enabled. Furthermore, multicast has a conceptual business model, and therefore is not an easy case to make. These factors, embedded deep in technology, but ultimately shaped by economics, led to a lack of multicast deployment. To address this problem, the AMT (Automatic IP Multicast without explicit Tunnels) specification has been developed by the Network Working Group at the IETF. This specification is designed to provide a mechanism for a migration path to a fully multicast-enabled backbone. It allows multicast to reach unicast-only receivers without the need for any explicit tunnels between the receiver and the source. We have formally validated the three-way handshake in the AMT specification using AVISPA against two main security goals: secrecy and authentication. We have demonstrated that the authentication goal is not met: an attacker can masquerade as an AMT relay, and the AMT gateway (at the end user) cannot distinguish a valid relay from an invalid one. Another attack was also found where an intruder can disconnect or shutdown a valid session for a valid end-user using a replay attack
    corecore