1,301 research outputs found

    SCOPe: Structural Classification of Proteins--extended, integrating SCOP and ASTRAL data and classification of new structures.

    Get PDF
    Structural Classification of Proteins-extended (SCOPe, http://scop.berkeley.edu) is a database of protein structural relationships that extends the SCOP database. SCOP is a manually curated ordering of domains from the majority of proteins of known structure in a hierarchy according to structural and evolutionary relationships. Development of the SCOP 1.x series concluded with SCOP 1.75. The ASTRAL compendium provides several databases and tools to aid in the analysis of the protein structures classified in SCOP, particularly through the use of their sequences. SCOPe extends version 1.75 of the SCOP database, using automated curation methods to classify many structures released since SCOP 1.75. We have rigorously benchmarked our automated methods to ensure that they are as accurate as manual curation, though there are many proteins to which our methods cannot be applied. SCOPe is also partially manually curated to correct some errors in SCOP. SCOPe aims to be backward compatible with SCOP, providing the same parseable files and a history of changes between all stable SCOP and SCOPe releases. SCOPe also incorporates and updates the ASTRAL database. The latest release of SCOPe, 2.03, contains 59 514 Protein Data Bank (PDB) entries, increasing the number of structures classified in SCOP by 55% and including more than 65% of the protein structures in the PDB

    Structural alphabets derived from attractors in conformational space

    Get PDF
    Background: The hierarchical and partially redundant nature of protein structures justifies the definition of frequently occurring conformations of short fragments as 'states'. Collections of selected representatives for these states define Structural Alphabets, describing the most typical local conformations within protein structures. These alphabets form a bridge between the string-oriented methods of sequence analysis and the coordinate-oriented methods of protein structure analysis.Results: A Structural Alphabet has been derived by clustering all four-residue fragments of a high-resolution subset of the protein data bank and extracting the high-density states as representative conformational states. Each fragment is uniquely defined by a set of three independent angles corresponding to its degrees of freedom, capturing in simple and intuitive terms the properties of the conformational space. The fragments of the Structural Alphabet are equivalent to the conformational attractors and therefore yield a most informative encoding of proteins. Proteins can be reconstructed within the experimental uncertainty in structure determination and ensembles of structures can be encoded with accuracy and robustness.Conclusions: The density-based Structural Alphabet provides a novel tool to describe local conformations and it is specifically suitable for application in studies of protein dynamics. © 2010 Pandini et al; licensee BioMed Central Ltd

    Pleiades in ancient Mesopotamia

    Get PDF
    In this paper I will analyse the different features of the Pleiades in the astronomical, astrological, and calendrical interpretation as well as their mythical and cultural background in ancient Mesopotamia. According to cuneiform sources, the Pleiades are among the most important stars. They are simply known in Sumerian as ―the Stars‖ (MUL.MUL), while their Akkadian name, ―the Bristle‖ (zappu), links them to the imagery and the cultural context of the ―Bull of Heaven‖ constellation (Taurus), to which they belong. Pleiades are frequently depicted as seven dots or seven stars, and identified on a mythological level with groups of seven divine beings. In fact, the Sumerian ideogram for ―seven‖ is used as an alternative name for the Pleiades. In particular they show a close relation to a group of demons, called the Seven (Sebēttu), that, according to an etiological myth, causes the eclipse of the moon. The relation of the Pleiades to the war and death sphere is strengthened by their association with the Netherworld god Nergal/Erra, as well as their identification with the god’s planet (Mars). Finally, the Pleiades are among the few celestial bodies that receive a cult, and specific prayers are dedicated to them. From the sources it emerges that the Pleiades are mainly related to the movement of the Moon, and it is worth noting that the list of constellations of the ecliptic begins precisely with the Pleiades. Furthermore, the Pleiades play an important part in the calendrical reckoning, a role that is clearly stated in almanacs as the MUL.APIN, as well as in the intercalation scheme based on the conjunction of the Moon and the Pleiades

    A high level interface to SCOP and ASTRAL implemented in Python

    Get PDF
    BACKGROUND: Benchmarking algorithms in structural bioinformatics often involves the construction of datasets of proteins with given sequence and structural properties. The SCOP database is a manually curated structural classification which groups together proteins on the basis of structural similarity. The ASTRAL compendium provides non redundant subsets of SCOP domains on the basis of sequence similarity such that no two domains in a given subset share more than a defined degree of sequence similarity. Taken together these two resources provide a 'ground truth' for assessing structural bioinformatics algorithms. We present a small and easy to use API written in python to enable construction of datasets from these resources. RESULTS: We have designed a set of python modules to provide an abstraction of the SCOP and ASTRAL databases. The modules are designed to work as part of the Biopython distribution. Python users can now manipulate and use the SCOP hierarchy from within python programs, and use ASTRAL to return sequences of domains in SCOP, as well as clustered representations of SCOP from ASTRAL. CONCLUSION: The modules make the analysis and generation of datasets for use in structural genomics easier and more principled

    Towards Structural Classification of Proteins based on Contact Map Overlap

    Get PDF
    A multitude of measures have been proposed to quantify the similarity between protein 3-D structure. Among these measures, contact map overlap (CMO) maximization deserved sustained attention during past decade because it offers a fine estimation of the natural homology relation between proteins. Despite this large involvement of the bioinformatics and computer science community, the performance of known algorithms remains modest. Due to the complexity of the problem, they got stuck on relatively small instances and are not applicable for large scale comparison. This paper offers a clear improvement over past methods in this respect. We present a new integer programming model for CMO and propose an exact B &B algorithm with bounds computed by solving Lagrangian relaxation. The efficiency of the approach is demonstrated on a popular small benchmark (Skolnick set, 40 domains). On this set our algorithm significantly outperforms the best existing exact algorithms, and yet provides lower and upper bounds of better quality. Some hard CMO instances have been solved for the first time and within reasonable time limits. From the values of the running time and the relative gap (relative difference between upper and lower bounds), we obtained the right classification for this test. These encouraging result led us to design a harder benchmark to better assess the classification capability of our approach. We constructed a large scale set of 300 protein domains (a subset of ASTRAL database) that we have called Proteus 300. Using the relative gap of any of the 44850 couples as a similarity measure, we obtained a classification in very good agreement with SCOP. Our algorithm provides thus a powerful classification tool for large structure databases

    Identification of similar regions of protein structures using integrated sequence and structure analysis tools

    Get PDF
    BACKGROUND: Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest. RESULTS: Users are able to submit their own queries or use a structure already in the PDB. Currently the databases that a user can query include the popular structural datasets ASTRAL 40 v1.69, ASTRAL 95 v1.69, CLUSTER50, CLUSTER70 and CLUSTER90 and PDBSELECT25. The results can be downloaded directly from the site and include function prediction, analysis of the most conserved environments and automated annotation of query proteins. These results reflect both the hits found with PSI-BLAST, HMMer and with S-BLEST. We have evaluated how well annotation transfer can be performed on SCOP ID's, Gene Ontology (GO) ID's and EC Numbers. The method is very efficient and totally automated, generally taking around fifteen minutes for a 400 residue protein. CONCLUSION: With structural genomics initiatives determining structures with little, if any, functional characterization, development of protein structure and function analysis tools are a necessary endeavor. We have developed a useful application towards a solution to this problem using common structural and sequence based analysis tools. These approaches are able to find statistically significant environments in a database of protein structure, and the method is able to quantify how closely associated each environment is to a predicted functional annotation

    Detecting similarities among distant homologous proteins by comparison of domain flexibilities

    Get PDF
    Aim of this work is to assess the informativeness of protein dynamics in the detection of similarities among distant homologous proteins. To this end, an approach to perform large-scale comparisons of protein domain flexibilities is proposed. CONCOORD is confirmed as a reliable method for fast conformational sampling. The root mean square fluctuation of alpha carbon positions in the essential dynamics subspace is employed as a measure of local flexibility and a synthetic index of similarity is presented. The dynamics of a large collection of protein domains from ASTRAL/SCOP40 is analyzed and the possibility to identify relationships, at both the family and the superfamily levels, on the basis of the dynamical features is discussed. The obtained picture is in agreement with the SCOP classification, and furthermore suggests the presence of a distinguishable familiar trend in the flexibility profiles. The results support the complementarity of the dynamical and the structural information, suggesting that information from dynamics analysis can arise from functional similarities, often partially hidden by a static comparison. On the basis of this first test, flexibility annotation can be expected to help in automatically detecting functional similarities otherwise unrecoverable. © 2007 The Author(s)

    The Overlap of Small Molecule and Protein Binding Sites within Families of Protein Structures

    Get PDF
    Protein–protein interactions are challenging targets for modulation by small molecules. Here, we propose an approach that harnesses the increasing structural coverage of protein complexes to identify small molecules that may target protein interactions. Specifically, we identify ligand and protein binding sites that overlap upon alignment of homologous proteins. Of the 2,619 protein structure families observed to bind proteins, 1,028 also bind small molecules (250–1000 Da), and 197 exhibit a statistically significant (p<0.01) overlap between ligand and protein binding positions. These “bi-functional positions”, which bind both ligands and proteins, are particularly enriched in tyrosine and tryptophan residues, similar to “energetic hotspots” described previously, and are significantly less conserved than mono-functional and solvent exposed positions. Homology transfer identifies ligands whose binding sites overlap at least 20% of the protein interface for 35% of domain–domain and 45% of domain–peptide mediated interactions. The analysis recovered known small-molecule modulators of protein interactions as well as predicted new interaction targets based on the sequence similarity of ligand binding sites. We illustrate the predictive utility of the method by suggesting structural mechanisms for the effects of sanglifehrin A on HIV virion production, bepridil on the cellular entry of anthrax edema factor, and fusicoccin on vertebrate developmental pathways. The results, available at http://pibase.janelia.org, represent a comprehensive collection of structurally characterized modulators of protein interactions, and suggest that homologous structures are a useful resource for the rational design of interaction modulators
    corecore