1,178 research outputs found

    Intelligent Video Ingestion for Real-time Traffic Monitoring

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via the DOI in this recordAs an indispensable part of modern critical infrastructures, cameras deployed at strategic places and prime junctions in an intelligent transportation system (ITS), can help operators in observing traffic flow, identifying any emergency situation, or making decisions regarding road congestion without arriving on the scene. However, these cameras are usually equipped with heterogeneous and turbulent networks, making the realtime smooth playback of traffic monitoring videos with high quality a grand challenge. In this paper, we propose a light-weight Deep Reinforcement Learning (DRL) based approach, namely sRC-C (smart bitRate Control with a Continuous action space), to enhance the quality of realtime traffic monitoring by adjusting the video bitrate adaptively. Distinguished from the existing bitrate adjusting approaches, sRC-C can overcome the bias incurred by deterministic discretization of candidate bitrates by adjusting the video bitrate with more f ine-grained control from a continuous action space, thus significantly improving the Quality-of-Service (QoS). With carefully designed state space and neural network model, sRC-C can be implemented on cameras with scarce resources to support real-time live video streaming with low inference time. Extensive experiments show that sRC-C can reduce the frame loss counts and hold time by 24% and 15.5%, respectively, even with comparable bandwidth utilization. Meanwhile, compared to the-state-of-art approaches, sRC-C can improve the QoS by 30.4%.National Key Research and Development Program of ChinaEuropean Union Horizon 2020Leading Technology of Jiangsu Basic Research PlanNational Natural Science Foundation of ChinaChongqing Key Laboratory of Digital Cinema Art Theory and Technolog

    Latency Target based Analysis of the DASH.js Player

    Full text link
    We analyse the low latency performance of the three Adaptive Bitrate (ABR) algorithms in the dash.js Dynamic Adaptive Streaming over HTTP (DASH) player with respect to a range of latency targets and configuration options. We perform experiments on our DASH Testbed which allows for testing with a range of real world derived network profiles. Our experiments enable a better understanding of how latency targets affect quality of experience (QoE), and how well the different algorithms adhere to their targets. We find that with dash.js v4.5.0 the default Dynamic algorithm achieves the best overall QoE. We show that whilst the other algorithms can achieve higher video quality at lower latencies, they do so only at the expense of increased stalling. We analyse the poor performance of L2A-LL in our tests and develop modifications which demonstrate significant improvements. We also highlight how some low latency configuration settings can be detrimental to performance.Comment: To be published in Proceedings of the 14th ACM Multimedia Systems Conference (MMSys '23), June 7-10, 2023, Vancouver, BC, Canad

    Deep Reinforcement Learning with Importance Weighted A3C for QoE enhancement in Video Delivery Services

    Full text link
    Adaptive bitrate (ABR) algorithms are used to adapt the video bitrate based on the network conditions to improve the overall video quality of experience (QoE). Recently, reinforcement learning (RL) and asynchronous advantage actor-critic (A3C) methods have been used to generate adaptive bit rate algorithms and they have been shown to improve the overall QoE as compared to fixed rule ABR algorithms. However, a common issue in the A3C methods is the lag between behaviour policy and target policy. As a result, the behaviour and the target policies are no longer synchronized which results in suboptimal updates. In this work, we present ALISA: An Actor-Learner Architecture with Importance Sampling for efficient learning in ABR algorithms. ALISA incorporates importance sampling weights to give more weightage to relevant experience to address the lag issues with the existing A3C methods. We present the design and implementation of ALISA, and compare its performance to state-of-the-art video rate adaptation algorithms including vanilla A3C implemented in the Pensieve framework and other fixed-rule schedulers like BB, BOLA, and RB. Our results show that ALISA improves average QoE by up to 25%-48% higher average QoE than Pensieve, and even more when compared to fixed-rule schedulers.Comment: Number of pages: 10, Number of figures: 9, Conference name: 24th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM

    Streaming and User Behaviour in Omnidirectional Videos

    Get PDF
    Omnidirectional videos (ODVs) have gone beyond the passive paradigm of traditional video, offering higher degrees of immersion and interaction. The revolutionary novelty of this technology is the possibility for users to interact with the surrounding environment, and to feel a sense of engagement and presence in a virtual space. Users are clearly the main driving force of immersive applications and consequentially the services need to be properly tailored to them. In this context, this chapter highlights the importance of the new role of users in ODV streaming applications, and thus the need for understanding their behaviour while navigating within ODVs. A comprehensive overview of the research efforts aimed at advancing ODV streaming systems is also presented. In particular, the state-of-the-art solutions under examination in this chapter are distinguished in terms of system-centric and user-centric streaming approaches: the former approach comes from a quite straightforward extension of well-established solutions for the 2D video pipeline while the latter one takes the benefit of understanding users’ behaviour and enable more personalised ODV streaming

    Enhanced Multimedia Exchanges over the Internet

    Get PDF
    Although the Internet was not originally designed for exchanging multimedia streams, consumers heavily depend on it for audiovisual data delivery. The intermittent nature of multimedia traffic, the unguaranteed underlying communication infrastructure, and dynamic user behavior collectively result in the degradation of Quality-of-Service (QoS) and Quality-of-Experience (QoE) perceived by end-users. Consequently, the volume of signalling messages is inevitably increased to compensate for the degradation of the desired service qualities. Improved multimedia services could leverage adaptive streaming as well as blockchain-based solutions to enhance media-rich experiences over the Internet at the cost of increased signalling volume. Many recent studies in the literature provide signalling reduction and blockchain-based methods for authenticated media access over the Internet while utilizing resources quasi-efficiently. To further increase the efficiency of multimedia communications, novel signalling overhead and content access latency reduction solutions are investigated in this dissertation including: (1) the first two research topics utilize steganography to reduce signalling bandwidth utilization while increasing the capacity of the multimedia network; and (2) the third research topic utilizes multimedia content access request management schemes to guarantee throughput values for servicing users, end-devices, and the network. Signalling of multimedia streaming is generated at every layer of the communication protocol stack; At the highest layer, segment requests are generated, and at the lower layers, byte tracking messages are exchanged. Through leveraging steganography, essential signalling information is encoded within multimedia payloads to reduce the amount of resources consumed by non-payload data. The first steganographic solution hides signalling messages within multimedia payloads, thereby freeing intermediate node buffers from queuing non-payload packets. Consequently, source nodes are capable of delivering control information to receiving nodes at no additional network overhead. A utility function is designed to minimize the volume of overhead exchanged while minimizing visual artifacts. Therefore, the proposed scheme is designed to leverage the fidelity of the multimedia stream to reduce the largest amount of control overhead with the lowest negative visual impact. The second steganographic solution enables protocol translation through embedding packet header information within payload data to alternatively utilize lightweight headers. The protocol translator leverages a proposed utility function to enable the maximum number of translations while maintaining QoS and QoE requirements in terms of packet throughput and playback bit-rate. As the number of multimedia users and sources increases, decentralized content access and management over a blockchain-based system is inevitable. Blockchain technologies suffer from large processing latencies; consequently reducing the throughput of a multimedia network. Reducing blockchain-based access latencies is therefore essential to maintaining a decentralized scalable model with seamless functionality and efficient utilization of resources. Adapting blockchains to feeless applications will then port the utility of ledger-based networks to audiovisual applications in a faultless manner. The proposed transaction processing scheme will enable ledger maintainers in sustaining desired throughputs necessary for delivering expected QoS and QoE values for decentralized audiovisual platforms. A block slicing algorithm is designed to ensure that the ledger maintenance strategy is benefiting the operations of the blockchain-based multimedia network. Using the proposed algorithm, the throughput and latency of operations within the multimedia network are then maintained at a desired level
    • …
    corecore