218 research outputs found

    A Systematic Mapping Study of Empirical Studies on Software Cloud Testing Methods

    Get PDF
    Context: Software has become more complicated, dynamic, and asynchronous than ever, making testing more challenging. With the increasing interest in the development of cloud computing, and increasing demand for cloud-based services, it has become essential to systematically review the research in the area of software testing in the context of cloud environments. Objective: The purpose of this systematic mapping study is to provide an overview of the empirical research in the area of software cloud-based testing, in order to build a classification scheme. We investigate functional and non-functional testing methods, the application of these methods, and the purpose of testing using these methods. Method: We searched for electronically available papers in order to find relevant literature and to extract and analyze data about the methods used. Result: We identified 69 primary studies reported in 75 research papers published in academic journals, conferences, and edited books. Conclusion: We found that only a minority of the studies combine rigorous statistical analysis with quantitative results. The majority of the considered studies present early results, using a single experiment to evaluate their proposed solution

    Business Intelligence for Small and Middle-Sized Entreprises

    Full text link
    Data warehouses are the core of decision support sys- tems, which nowadays are used by all kind of enter- prises in the entire world. Although many studies have been conducted on the need of decision support systems (DSSs) for small businesses, most of them adopt ex- isting solutions and approaches, which are appropriate for large-scaled enterprises, but are inadequate for small and middle-sized enterprises. Small enterprises require cheap, lightweight architec- tures and tools (hardware and software) providing on- line data analysis. In order to ensure these features, we review web-based business intelligence approaches. For real-time analysis, the traditional OLAP architecture is cumbersome and storage-costly; therefore, we also re- view in-memory processing. Consequently, this paper discusses the existing approa- ches and tools working in main memory and/or with web interfaces (including freeware tools), relevant for small and middle-sized enterprises in decision making

    A survey on software coupling relations and tools

    Full text link
    Context Coupling relations reflect the dependencies between software entities and can be used to assess the quality of a program. For this reason, a vast amount of them has been developed, together with tools to compute their related metrics. However, this makes the coupling measures suitable for a given application challenging to find. Goals The first objective of this work is to provide a classification of the different kinds of coupling relations, together with the metrics to measure them. The second consists in presenting an overview of the tools proposed until now by the software engineering academic community to extract these metrics. Method This work constitutes a systematic literature review in software engineering. To retrieve the referenced publications, publicly available scientific research databases were used. These sources were queried using keywords inherent to software coupling. We included publications from the period 2002 to 2017 and highly cited earlier publications. A snowballing technique was used to retrieve further related material. Results Four groups of coupling relations were found: structural, dynamic, semantic and logical. A fifth set of coupling relations includes approaches too recent to be considered an independent group and measures developed for specific environments. The investigation also retrieved tools that extract the metrics belonging to each coupling group. Conclusion This study shows the directions followed by the research on software coupling: e.g., developing metrics for specific environments. Concerning the metric tools, three trends have emerged in recent years: use of visualization techniques, extensibility and scalability. Finally, some coupling metrics applications were presented (e.g., code smell detection), indicating possible future research directions. Public preprint [https://doi.org/10.5281/zenodo.2002001]

    Envisioning Model-Based Performance Engineering Frameworks.

    Get PDF
    Abstract Our daily activities depend on complex software systems that must guarantee certain performance. Several approaches have been devised in the last decade to validate software systems against performance requirements. However, software designers still encounter problems in the interpretation of performance analysis results (e.g., mean values, probability distribution functions) and in the definition of design alternatives (e.g., to split a software component in two and redeploy one of them) aimed at fulfilling performance requirements. This paper describes a general model-based performance engineering framework to support designers in dealing with such problems aimed at enhancing the system. The framework relies on a formalization of the knowledge needed in order to characterize performance flaws and provide alternative system design. Such knowledge can be instantiated based on the techniques devised for interpreting performance analysis results and providing feedback to designers. Three techniques are considered in this paper for instantiating the framework and the main challenges to face during such process are pointed out and discussed

    A Three Tier Architecture Applied to LiDAR Processing and Monitoring

    Get PDF
    • …
    corecore