7 research outputs found

    Energy Efficiency in Hybrid Mobile and Wireless Networks

    Get PDF
    Wireless Internet access is almost pervasive nowadays, and many types of wireless networks can be used to access the Internet. However, along with this growth, there is an even greater concern about the energy consumption and efficiency of mobile devices as well as of the supporting networks, triggering the appearance of the concept of green communication. While some efforts have been made towards this direction, challenges still exist and need to be tackled from diverse perspectives. Cellular networks, WLANs, and ad hoc networks in the form of wireless mesh networks are the most popular technologies for wireless Internet access. The availability of such a variety of access networks has also paved the way to explore synergistic approaches for Internet access, leading to the concept of hybrid networks and relay communications. In addition, many mobile devices are being equipped with multiple interfaces, enabling them to operate in hybrid networks. In contrast, the improvements in the battery technology itself have not matched the pace of the emerging mobile applications. The situation becomes more sophisticated when a mobile device functions also as a relay node to forward other station’s data. In the literature, energy efficiency of mobile devices has been addressed from various perspectives such as protocol-level efforts, battery management efforts, etc. However, there is little work on energy efficiency in hybrid mobile and wireless networks and devices with heterogeneous connections. For example, when there are multiple networks available to a mobile device, how to achieve optimum long-term energy consumption of such a device is an open question. Furthermore, in today’s cellular networks, micro-, pico-, and femto-cells are the most popular network topologies in order to support high data rate services and high user density. With the growth of such small-cell solutions, the energy consumption of these networks is also becoming an important concern for operators. Towards this direction, various solutions have been proposed, ranging from deployment strategies for base stations to cooperative techniques etc. However, as base stations have the largest share in a network’s energy consumption, methods that allow lightly-loaded base stations sleep or be switched off are possible means as a feasible step towards green communications. In this dissertation, we tackle the above mentioned problems from two perspectives, i.e., mobile station’s and operator’s perspectives. More specifically, by taking into account the amount of transferred data in uplinks and downlinks individually for various components in a hybrid network, strategies are proposed to reduce mobile station’s battery energy consumption. For this purpose, other parameters such as link distance and remaining battery energy can also be considered for handover decision making, in order to maximize energy efficiency of the mobile station. To optimize long-term energy consumption of the mobile stations operated in such scenarios, a Markov decision process-based methodology is proposed as our contribution to this topic. Moreover, from operator’s perspective, a network energy conservation scheme which may switch off a base station is proposed for micro- or pico-cells scenarios. Both deterministic and probabilistic schemes are proposed for network energy conservation. The problems considered and the solutions proposed in this dissertation advance the frontiers of the research work within the theme of energy efficiency for mobile devices as well as hybrid mobile and wireless networks

    Context awareness in opportunistic computing

    Get PDF

    Towards tailored and adaptive wireless multi-hop routing protocols

    Get PDF

    Network sharing through service outsourcing in inter-domain IMS frameworks

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 161-167).Resource sharing can be used as a short-term solution to the imbalance between the supply and demand of network resources. Resources sharing enables operators to provide services to their subscribers using networks belonging to other operators. Resource sharing in mobile networks is increasingly becoming an option for operators to provide service to their subscribers. In this thesis we explore a mechanism for sharing access network resources that utilises negotiable short-term Service Level Agreements (SLA) that can easily adapt to changing network conditions. Through this mechanism operators of resource constrained networks may use near real time dynamic SLAs to negotiate network access services for their subscribers. We refer to this form of resource sharing as 'Service Outsourcing'

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Performance Optimization of Network Protocols for IEEE 802.11s-based Smart Grid Communications

    Get PDF
    The transformation of the legacy electric grid to Smart Grid (SG) poses numerous challenges in the design and development of an efficient SG communications network. While there has been an increasing interest in identifying the SG communications network and possible SG applications, specific research challenges at the network protocol have not been elaborated yet. This dissertation revisited each layer of a TCP/IP protocol stack which basically was designed for a wired network and optimized their performance in IEEE 802.11s-based Advanced Metering Infrastructure (AMI) communications network against the following challenges: security and privacy, AMI data explosion, periodic simultaneous data reporting scheduling, poor Transport Control Protocol (TCP) performance, Address Resolution Protocol (ARP) broadcast, and network interoperability. To address these challenges, layered and/or cross-layered protocol improvements were proposed for each layer of TCP/IP protocol stack. At the application layer, a tree-based periodic time schedule and a time division multiple access-based scheduling were proposed to reduce high contention when smart meters simultaneously send their reading. Homomorphic encryption performance was investigated to handle AMI data explosion while providing security and privacy. At the transport layer, a tree-based fixed Retransmission Timeout (RTO) setting and a path-error aware RTO that exploits rich information of IEEE 802.11s data-link layer path selection were proposed to address higher delay due to TCP mechanisms. At the network layer, ARP requests create broadcast storm problems in IEEE 802.11s due to the use of MAC addresses for routing. A secure piggybacking-based ARP was proposed to eliminate this issue. The tunneling mechanisms in the LTE network cause a downlink traffic problem to IEEE 802.11s. For the network interoperability, at the network layer of EPC network, a novel UE access list was proposed to address this issue. At the data-link layer, to handle QoS mismatch between IEEE 802.11s and LTE network, Dual Queues approach was proposed for the Enhanced Distributed Channel Access. The effectiveness of all proposed approaches was validated through extensive simulation experiments using a network simulator. The simulation results showed that the proposed approaches outperformed the traditional TCP/IP protocols in terms of end to end delay, packet delivery ratio, throughput, and collection time

    Collaborative Sensing in Automotive Scenarios : Enhancement of the Vehicular Electronic Horizon through Collaboratively Sensed Knowledge

    Get PDF
    Modern vehicles are equipped with a variety of advanced driver assistance systems that increase driving comfort, economy and safety. Respective information sources for these systems are local sensors, like cameras, radar or lidar. However, the next generation of assistant systems will require information above the local sensing range. An extension of the local perception can be provided by the use of appro- priate communication mechanisms. Hence, other vehicles can serve as an informa- tion source by providing their local perception data, but also any other information source, such as cloud services. Required communication can take place directly be- tween vehicles via mobile ad-hoc communication or via a backend by the use of cellu- lar communication. The appropriate technology depends on the respective use case, that determines information content, granularity and tolerated latency. Based on liter- ature, we derived a categorization of use case dependent information demands, with respect to communication. The resulting three zones, namely safety zone, awareness zone and information zone, refer to the tolerated latency between the occurrence of an information and the point in time the information has to be processed at the receiver side. While communication mechanisms for the safety zone, i. e., the ego-vehicle’s di- rect surroundings with a remaining driving time of less than 2 − 5 seconds, have been focus in research and standardization in the past, respective mechanisms for larger distances have not been sufficiently considered. In this thesis, we examine in- formation distribution mechanisms in context of the previously mentioned use case categories. As the first key contribution, we consider the gathering of vehicular sensed data with regard to the information zone, i. e., more than 30 seconds remaining driving time to the point of the information origin. We developed a probabilistic data collection model that is able to reduce data traffic up to 85 % compared to opportunistic trans- mission and still sticks to certain quality metrics, e. g., a maximum detection latency. A central adaption of transmission probabilities to the density of transmitting vehi- cles is applicable for cellular use and copes with sparse traffic situations. Moreover, we have extended this approach by hybrid communication, i. e., the parallel use of cellular and mobile ad-hoc communication. This allows to further reduce cellular based data traffic, in particular in case of dense traffic. As the second key contribution, we examine the efficient distribution of the pre- viously gathered information. Information is structured and prioritized according to the most probable driving path, as so-called electronic horizon. The transmission towards the vehicles is performed in small data packets, according to the given pri- orities. The aim is to transmit only information relevant for road segments that will be used. Concerning this, we developed a mechanism for most probable travel path estimation and a data structure for efficient mapping of the electronic horizon. As the third key contribution, we examine the information exchange in the aware- ness zone, an area between the safety zone and the information zone with about 5 to 30 seconds remaining driving time to the point of the information origin. Derived from the respective use cases, this data is not directly safety relevant, but it is still about dynamic position information of neighboring vehicles. Due to the relatively long distance, direct vehicle to vehicle communication is not possible. Respective data has to be forwarded by intermediate vehicles. However, position beacons with- out data forwarding can already cause channel congestion in dense traffic situations. The use of cellular networks would require absolute total network coverage with permanent free channel resources. To enable forwarding of dynamic vehicle infor- mation anyhow, we developed at first a mechanism to reduce the channel load for position beacons. Next, we use the freed-up bandwidth to forward dynamic informa- tion about neighboring vehicle positions. With this mechanism, we are able to more than double the range of vehicular perception, with respect to moving objects. In extension to standardized communication mechanisms for the safety relevant direct proximity, our three mentioned contributions provide the means to complete the long range vehicular perception for future advanced driver assistance systems
    corecore