43 research outputs found

    Computational Electromagnetics in Plasmonics

    Get PDF

    Annual Review of Progress in Applied Computational Electromagnetics

    Get PDF
    Approved for public release; distribution is unlimited

    Modeling EMI Resulting from a Signal Via Transition Through Power/Ground Layers

    Get PDF
    Signal transitioning through layers on vias are very common in multi-layer printed circuit board (PCB) design. For a signal via transitioning through the internal power and ground planes, the return current must switch from one reference plane to another reference plane. The discontinuity of the return current at the via excites the power and ground planes, and results in noise on the power bus that can lead to signal integrity, as well as EMI problems. Numerical methods, such as the finite-difference time-domain (FDTD), Moment of Methods (MoM), and partial element equivalent circuit (PEEC) method, were employed herein to study this problem. The modeled results are supported by measurements. In addition, a common EMI mitigation approach of adding a decoupling capacitor was investigated with the FDTD method

    Numerical methods for electromagnetic wave propagation and scattering in complex media

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Vita.Includes bibliographical references (p. 227-242).Numerical methods are developed to study various applications in electromagnetic wave propagation and scattering. Analytical methods are used where possible to enhance the efficiency, accuracy, and applicability of the numerical methods. Electromagnetic induction (EMI) sensing is a popular technique to detect and discriminate buried unexploded ordnance (UXO). Time domain EMI sensing uses a transient primary magnetic field to induce currents within the UXO. These currents induce a secondary field that is measured and used to determine characteristics of the UXO. It is shown that the EMI response is difficult to calculate in early time when the skin depth is small. A new numerical method is developed to obtain an accurate and fast solution of the early time EMI response. The method is combined with the finite element method to provide the entire time domain response. The results are compared with analytical solutions and experimental data, and excellent agreement is obtained. A fast Method of Moments is presented to calculate electromagnetic wave scattering from layered one dimensional rough surfaces. To facilitate the solution, the Forward Backward method with Spectral Acceleration is applied. As an example, a dielectric layer on a perfect electric conductor surface is studied. First, the numerical results are compared with the analytical solution for layered flat surfaces to partly validate the formulation. Second, the accuracy, efficiency, and convergence of the method are studied for various rough surfaces and layer permittivities. The Finite Difference Time Domain (FDTD) method is used to study metamaterials exhibiting both negative permittivity and permeability in certain frequency bands.(cont.) The structure under study is the well-known periodic arrangement of rods and split-ring resonators, previously used in experimental setups. For the first time, the numerical results of this work show that fields propagating inside the metamaterial with a forward power direction exhibit a backward phase velocity and negative index of refraction. A new metamaterial design is presented that is less lossy than previous designs. The effects of numerical dispersion in the FDTD method are investigated for layered, anisotropic media. The numerical dispersion relation is derived for diagonally anisotropic media. The analysis is applied to minimize the numerical dispersion error of Huygens' plane wave sources in layered, uniaxial media. For usual discretization sizes, a typical reduction of the scattered field error on the order of 30 dB is demonstrated. The new FDTD method is then used to study the Angular Correlation Function (ACF) of the scattered fields from continuous random media with and without a target object present. The ACF is shown to be as much as 10 dB greater when a target object is present for situations where the target is undetectable by examination of the radar cross section only.by Christopher D. Moss.Ph.D

    Plasmonic nanoantenna based coupler for telecom range

    Get PDF

    ICASE/LaRC Workshop on Adaptive Grid Methods

    Get PDF
    Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field

    Digital watermarking and novel security devices

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    [Research activities in applied mathematics, fluid mechanics, and computer science]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995
    corecore