57 research outputs found

    The design and analysis of novel integrated phase-change photonic memory and computing devices

    Get PDF
    The current massive growth in data generation and communication challenges traditional computing and storage paradigms. The integrated silicon photonic platform may alleviate the physical limitations resulting from the use of electrical interconnects and the conventional von Neuman computing architecture, due to its intrinsic energy and bandwidth advantages. This work focuses on the development of the phase-change all-photonic memory (PPCM), a device potentially enabling the transition from the electrical to the optical domain by providing the (previously unavailable) non-volatile all-photonic storage functionality. PPCM devices allow for all-optical encoding of the information on the crystal fraction of a waveguide-implemented phase-change material layer, here Ge2Sb2Te5, which in turn modulates the transmitted signal amplitude. This thesis reports novel developments of the numerical methods necessary to emulate the physics of PPCM device operation and performance characteristics, illustrating solutions enabling the realization of a simulation framework modelling the inherently three-dimensional and self-influencing optical, thermal and phase-switching behaviour of PPCM devices. This thesis also depicts an innovative, fast and cost-effective method to characterise the key optical properties of phase-change materials (upon which the performance of PPCM devices depend), exploiting the reflection pattern of a purposely built layer stack, combined with a smart fit algorithm adapting potential solutions drawn from the scientific literature. The simulation framework developed in the thesis is used to analyse reported PPCM experimental results. Numerous sources of uncertainty are underlined, whose systematic analysis reduced to the peculiar non-linear optical properties of Ge2Sb2Te5. Yet, the data fit process validates both the simulation tool and the remaining physical assumptions, as the model captures the key aspects of the PPCM at high optical intensity, and reliably and accurately predicts its behaviour at low intensity, enabling to investigate its underpinning physical mechanisms. Finally, a novel PPCM memory architecture, exploiting the interaction of a much-reduced Ge2Sb2Te5 volume with a plasmonic resonant nanoantenna, is proposed and numerically investigated. The architecture concept is described and the memory functionality is demonstrated, underlining its potential energy and speed improvement on the conventional device by up to two orders of magnitude.Engineering and Physical Sciences Research Council (EPSRC

    Engineering the catalytic batchwise synthesis of H2O2 from its elements

    Get PDF
    Hydrogen peroxide is a versatile oxidizing agent with several industrial applications. It is also one of “greenest”, since its oxidation by-product is only water. The global demand of the peroxide is increasing, due to its recent usage in new large scale oxidation processes, such as the epoxidation of propylene to propylene oxide and the synthesis of caprolactam. Nowadays most of the world production of H2O2 is carried out by the anthraquinone autoxidation process. Though very safe (H2 and O2 are never in direct contact), the costs related to the high energy consumption for the extraction and purification of the peroxide produced, together with the usage and periodic replacement of toxic and expensive solvents, stimulated the interest in new production paths. Among the several alternatives proposed, the most fascinating one is the direct synthesis (DS) from H2 and O2. It is a environmentally friendly process that would be economically profitable for an in-situ production, requiring lower investments and operating costs. During the last thirty years this system has been under intensive study both by industries as well as academia. However, it has not been commercialized yet, mainly because of poor selectivity and safety concerns. While most of the efforts on improving DS must address the catalyst, there are reaction engineering aspects that deserve attention. DS is frequently carried out in solvents other than water, both to improve H2 solubility and isolate the undesired product (H2O). Further, CO2 is used for safety, H2 solubility and H2O2 stability. However, the lack of information about the solubility of the reagents makes it difficult to develop a realistic kinetic description of the reactions involved in the DS process. Hence, the first step of the research presented herein dealt with solubility measurements, at temperatures in the range 268-288 K and pressures between 0.37 and 3.5 MPa. Measurements were focused on H2, i.e. the limiting reagent during the reaction. At all conditions investigated a linear relation between hydrogen partial pressure and concentration was observed. Increasing the temperature resulted in an enhanced H2 solubility at the same H2 partial pressure. At constant H2 fugacity, the presence of CO2 favored the dissolution of hydrogen in the liquid phase. Correlation and generalization of the measurements were provided through an EoS-based thermodynamic model for the estimation of H2 solubility at reaction conditions. A batch apparatus for the direct synthesis of hydrogen peroxide was developed, to carry out activity measurements on new catalysts and develop a quantitative model of the kinetics. Hydrogenation, disproportionation and direct synthesis reactions were studied on a commercial 5 wt.% Pd/C catalysts at temperatures in the range 258-313 K and pressure up to 2 MPa. Separate experiments were performed to highlight the role of each reaction. An enhanced H2O2 production was obtained adopting different H2 feeding policies, although selectivity did not exceeded 30%. A model of the gas bubbling, batch slurry reactor for H2O2 direct synthesis was developed. A sensitivity analysis on the mass transfer coefficients excluded any limitations occurring at experimental conditions. Comparable temperature dependence was observed for H2O production, hydrogenation and disproportionation (activation energies close to 45 kJ mol-1), while H2O2 synthesis had a much lower activation energy (close to 24 kJ mol-1), suggesting that a higher selectivity is achievable at low temperature. Disproportionation reaction had a very limited influence on the overall peroxide production rate, while hydrogenation was the most rapid side reaction. Water formation was significant, prevailing at higher temperatures. Following these results, Pd and PdAu catalysts supported on SBA15 were prepared and investigated for H2O2 direct synthesis. Catalysts were doped with bromine, a promoter in the H2O2 direct synthesis. Productivity and selectivity decreased when bromine was incorporated in the catalysts, suggesting a possible poisoning due to the grafting process. A synergetic effect between Pd and Au was observed both in presence and absence of bromopropylsilane grafting on the catalyst. Three modifiers of the SBA15 support (Al, CeO2 and Ti) were chosen to elucidate the influence of the surface properties on metal dispersion and catalytic performance. Higher productivity and selectivity were achieved incorporating Al into the SBA15 framework, whereas neither Ti nor CeO2 improved H2O2 yields. The enhanced performance observed for the PdAu/Al-SBA15 catalysts was attributed to the increased number of Brþnsted acid sites. Supported catalysts were also synthesized depositing Pd on a highly acidic, macroporous PS-DVB resin (Lewtit K2621). Catalysts with active metal content in the range 0.3-5 wt.% were tested batchwise for the direct synthesis of H2O2. Preliminary H2O2 measurements and X-ray photoelectron spectroscopy (XPS) analysis revealed that the reduced form of Pd was more selective than PdO towards the peroxide. Transmission electron microscopy (TEM) images showed that smaller nanoclusters favored the production of H2O, likely due to their O-O bond breaking aptitud

    Improving Range Estimation of a 3D FLASH LADAR via Blind Deconvolution

    Get PDF
    The purpose of this research effort is to improve and characterize range estimation in a three-dimensional FLASH LAser Detection And Ranging (3D FLASH LADAR) by investigating spatial dimension blurring effects. The myriad of emerging applications for 3D FLASH LADAR both as primary and supplemental sensor necessitate superior performance including accurate range estimates. Along with range information, this sensor also provides an imaging or laser vision capability. Consequently, accurate range estimates would also greatly aid in image quality of a target or remote scene under interrogation. Unlike previous efforts, this research accounts for pixel coupling by defining the range image mathematical model as a convolution between the system spatial impulse response and the object (target or remote scene) at a particular range slice. Using this model, improved range estimation is possible by object restoration from the data observations. Object estimation is principally performed by deriving a blind deconvolution Generalized Expectation Maximization (GEM) algorithm with the range determined from the estimated object by a normalized correlation method. Theoretical derivations and simulation results are verified with experimental data of a bar target taken from a 3D FLASH LADAR system in a laboratory environment. Additionally, among other factors, range separation estimation variance is a function of two LADAR design parameters (range sampling interval and transmitted pulse-width), which can be optimized using the expected range resolution between two point sources. Using both CRB theory and an unbiased estimator, an investigation is accomplished that finds the optimal pulse-width for several range sampling scenarios using a range resolution metric

    Sub-wavelength plasmonic-enhanced phase-change memory

    Get PDF
    This is the author accepted manuscript. The final version is available from the Society of Photo-optical Instrumentation Engineers via the DOI in this record The Ge2Sb2Te5 phase-change alloy (GST) is known for its dramatic complex refractive index (and electrical) contrast between its amorphous and crystalline phases. Switching between such phases is also non-volatile and can be achieved on the nanosecond timescale. The combination of GST with the widespread SiN integrated optical waveguide platform led to the proposal of the all-optical integrated phase-change memory, which exploits the interaction of the guided mode evanescent field with a thin layer of GST on the waveguide top surface. The relative simplicity of the architecture allows for its flexible application for data storage, logic gating, arithmetic and neuromorphic computing. Read operation relies on the transmitted signal optical attenuation, due to the GST extinction coefficient. Write/erase operations are performed via the same optical path, with a higher power ad-hoc pulsing scheme, which locally increases the temperature and triggers either the melt-quench process (write) or recrystallization (erase), encoding the information into the GST crystal fraction. Here we investigate the physical mechanisms involved in the write/erase and read processes via computational methods, with the view to explore novel architecture concepts that improve memory speed, energy efficiency and density. We show the achievements of the development of a 3D simulation framework, performing self-consistent calculations for wavepropagation, heat diffusion and phase-transition processes. We illustrate a viable memory optimization route, which adopts sub-wavelength plasmonic dimer nanoantenna structures to harvest the optical energy and maximize light-matter interaction. We calculate both a speed and energy efficiency improvement of around one order of magnitude, with respect to the conventional (non-plasmonic) device architecture.European CommissionEngineering and Physical Sciences Research Council (EPSRC)Deutsche Forschungsgemeinschaf

    Reconfigurable Phase-Change Metasurface Absorbers for Optoelectronics Device Applications

    Get PDF
    This thesis is concerned with the design and development of dynamically reconfigurable optical metasurfaces. This reconfigurability is achieved by integrating chalcogenide phase-change materials with plasmonic resonator structures of the metal-insulator-metal type. Switching the phase-change material between its amorphous and crystalline states results in dramatic changes in its optical properties, with consequent dramatic changes in the resonant behaviour of the plasmonic metasurface with which it is integrated. Moreover, such changes are non-volatile, reversible and potentially very fast, in the order of nanoseconds. The first part of the thesis is dedicated to the design, fabrication and characterisation of metasurface devices working at telecommunications wavelengths, specifically at wavelengths corresponding to the C-band (1530 to 1565 nm), and that act as a form of perfect absorber when the phase-change layer (in this case Ge2Sb2Te5) is amorphous but reflect strongly when switched to the crystalline state. Such behaviour can be used, for example, to provide a form of optical amplitude modulator. Fabricated devices not only showed very good performance, including a large modulation depth of ~77% and an extinction ratio of ~20 dB, but also incorporated a number of practicable design features often overlooked in the literature, including a means for protecting the phase-change layer from environmental oxidation and, importantly, an electrically-driven in-situ switching capability. In the second part of the thesis a method, based on eigenmode analysis and critical coupling theory, is developed to allow for the design and fabrication of perfect absorber type devices in a simple and efficient way, while at the same time maintaining design control over the key performance characteristics of resonant frequency, reflection coefficient at resonance and quality factor. Validation of this new method was carried out via the design and fabrication of a family of absorbers with a range of ‘on-demand’ quality factors, all operating at the same resonant frequency and able to be fabricated simply and simultaneously on the same chip. The final part of the thesis is concerned with the design and development of a switchable phase-change metamaterial type absorber working in the visible part of the spectrum and with non-volatile colour generating capability. With the phase-change layer, here GeTe, in the crystalline phase, the absorber can be tuned to selectively absorb the red, green and blue spectral bands, so generating vivid cyan, magenta and yellow pixels. When the phase-change layer is switched into the amorphous phase, the resonant absorption is suppressed and a flat, pseudo-white reflectance results. This potentially opens up a route to the development of non-volatile, phase-change metamaterial colour displays and colour electronic signage.Engineering and Physical Sciences Research Council (EPSRC

    Reconfigurable phase-change optical metasurfaces: novel design concepts to practicable devices

    Get PDF
    Optical metasurfaces have been proven to be capable of controlling amplitude, phase and polarization of optical beams without the need of bulky geometries, making them really attractive for the development of compact photonic devices. Recently, their combination with chalcogenide phase-change materials (traditionally employed in non-volatile optical and electrical memories), whose refractive index can be reversibly and repeatedly controlled, has been proposed to yield low power consumption tunable metasurfaces having several functionalities in a single device. However, despite phase-change memories are commercially available since various decades now, the unification of phase-change materials with metasurfaces towards real life applications is becoming a formidable task, mainly due to the several engineering branches involved in this technology, which sometimes compromise each other in a non-trivial way. This includes thermo/optical, thermo/electric, and chemical incompatibilities which are typically not taken into account by researchers working in the field, resulting in devices having exciting reconfigurable properties, but at the same time, lack of practicability. This thesis is therefore dedicated to the development of novel phase-change metasurface architectures which could partially or totally address such engineering problems. Particular emphasis has been put in the realization of reconfigurable metasurfaces for active wavefront control, as such a functionality remains relatively unexplored. The first part of this thesis focuses in the first experimental demonstration of active, reconfigurable non-mechanical beam steering devices working the near-infrared. This was achieved via integration of ultra-thin films of chalcogenide phase-change materials (in this case, the widely employed alloy Ge2Sb2Te5) within the body of a dielectric spacer in a plasmonic metal/insulator/metal metasurface architecture. Active, and optically reversible beam steering between two different angles with efficiencies up to 40% were demonstrated. The second part of this work shows the work carried out in metal-free metasurfaces as a way to manipulate optical beams with high efficiency in both transmission and/or reflection. This was achieved via combination of all-dielectric silicon nanocylinders with deeply-subwavelenght sized Ge2Sb2Te5 inclusions. By strategic placement of the phase-change inclusions in the regions of high electric field density, independent and active control of the metasuface resonances is demonstrated, with modulations depths as high as 70% and 65% in reflection and transmission respectively. Multilevel, and fully reversible optically-induced switching of the phasechange layer is also reported, with up to 11 levels of tunability over 8 switching cycles. Finally, the last section of this thesis introduces the concept of hybrid dielectric/plasmonic phase-change metasurfaces having key functional benefits when compared to both purely dielectric and plasmonic approaches. The proposed architectures showed great versatility in terms of both active amplitude and phase control, offering the possibility of designing devices for different purposes (i.e. such as active absorbers/modulators or beam steerers with enhanced efficiency) employing the same unit-cell configuration with minor geometry re-optimizations. Initial device experimental demonstrations of such an approach are discussed, as well as their potential in terms of delivering in-situ electrical switching capabilities using a metallic ground plane as a resistive heater.Engineering and Physical Sciences Research Council (EPSRC

    Direct synthesis H2O2 over palladium supported on rare earths promoted zirconia

    Get PDF
    The major aspects of investigation on direct synthesis of hydrogen peroxide are the synthesis of new materials and the definition of kinetics of reaction.The aim of the thesis is testing novel catalysts based on palladium supported on zirconia and ceria doped with rare earths.The catalysts evaluation was supported by adepth characterization of the materials.The experimental activity permitted to deduce valuable indications on the catalyst properties promoting the hydrogen peroxide production

    Tunable Silicon integrated photonics based on functional materials

    Get PDF
    This thesis is concerned with the design, fabrication, testing and development of tunable silicon photonic integrated circuits based on functional materials. This tunability is achieved by integrating liquid crystals, 2D materials and chalcogenide phase-change materials with silicon and silicon nitride integrated circuits. Switching the functional materials between their various states results in dramatic changes in the optical properties, with consequent changes in the optical response of the individual devices. Furthermore, such changes are volatile or non-volatile depending on the materials.Engineering and Physical Sciences Research Council (EPSRC

    Phase-Change Meta-Devices for Tuneable Bandpass Filtering in the Infrared

    Get PDF
    Tuneable light filters, especially those which are compact and fast to tune, are essential in a wide range of technologies, especially for multispectral imaging applications. However, state-of-the-art approaches to create such filters all possess drawbacks, with many wavelength regions poorly served. This thesis attempts to address this problem by combining metasurfaces which support extraordinary optical transmission (ultra-thin band-pass filters) with chalcogenide phase-change materials (adding dynamic tuneability). The optical properties of phase-change materials are very different in their amorphous and crystalline states and switching between such states can be rapidly controlled via thermal excitations. In this work nine different phase-change materials, including alloys of GeTe, GeSbTe, GeSbSeTe and GaLaS, were optically and elementally characterised and assessed for their application-specific suitability. The resulting materials data was used to computationally design and evaluate a range of tuneable infrared filter device designs both optically and thermally. These filters exhibit high transmission (≈80% at best) with large spectral tuning ranges of approximately +50% relative to their shortest wavelength; this range is sufficient to cover entire atmospheric transmission windows. This is the first such combination of phase-change materials and extraordinary optical transmission for application from the visible through to long-wave infrared (14 ÎŒm) regions of the spectrum. A rigorous computational study was conducted to produce comprehensive design guidelines for such filters, and confirm the viability of in-situ electrical switching. Several filter devices were experimentally fabricated, and the viability for a number of applications, including tuneable filtering, chemical sensing and infrared displays, was investigated and confirmed computationally.Engineering and Physical Sciences Research Council (EPSRC
    • 

    corecore