3,216 research outputs found

    Geometrical Ambiguity of Pair Statistics. I. Point Configurations

    Full text link
    Point configurations have been widely used as model systems in condensed matter physics, materials science and biology. Statistical descriptors such as the nn-body distribution function gng_n is usually employed to characterize the point configurations, among which the most extensively used is the pair distribution function g2g_2. An intriguing inverse problem of practical importance that has been receiving considerable attention is the degree to which a point configuration can be reconstructed from the pair distribution function of a target configuration. Although it is known that the pair-distance information contained in g2g_2 is in general insufficient to uniquely determine a point configuration, this concept does not seem to be widely appreciated and general claims of uniqueness of the reconstructions using pair information have been made based on numerical studies. In this paper, we introduce the idea of the distance space, called the D\mathbb{D} space. The pair distances of a specific point configuration are then represented by a single point in the D\mathbb{D} space. We derive the conditions on the pair distances that can be associated with a point configuration, which are equivalent to the realizability conditions of the pair distribution function g2g_2. Moreover, we derive the conditions on the pair distances that can be assembled into distinct configurations. These conditions define a bounded region in the D\mathbb{D} space. By explicitly constructing a variety of degenerate point configurations using the D\mathbb{D} space, we show that pair information is indeed insufficient to uniquely determine the configuration in general. We also discuss several important problems in statistical physics based on the D\mathbb{D} space.Comment: 28 pages, 8 figure

    Symmetric Relative Equilibria in the Four-Vortex Problem with Three Equal Vorticities

    Full text link
    We examine in detail the relative equilibria of the 4-vortex problem when three vortices have equal strength, that is, Γ1=Γ2=Γ3=1\Gamma_{1} = \Gamma_{2} = \Gamma_{3} = 1, and Γ4\Gamma_{4} is a real parameter. We give the exact number of relative equilibria and bifurcation values. We also study the relative equilibria in the vortex rhombus problem.Comment: 21 pages, 4 figures. arXiv admin note: text overlap with arXiv:1301.6194 by other author

    Linear Complexity Hexahedral Mesh Generation

    Full text link
    We show that any polyhedron forming a topological ball with an even number of quadrilateral sides can be partitioned into O(n) topological cubes, meeting face to face. The result generalizes to non-simply-connected polyhedra satisfying an additional bipartiteness condition. The same techniques can also be used to reduce the geometric version of the hexahedral mesh generation problem to a finite case analysis amenable to machine solution.Comment: 12 pages, 17 figures. A preliminary version of this paper appeared at the 12th ACM Symp. on Computational Geometry. This is the final version, and will appear in a special issue of Computational Geometry: Theory and Applications for papers from SCG '9

    Resonance clustering in wave turbulent regimes: Integrable dynamics

    Full text link
    Two fundamental facts of the modern wave turbulence theory are 1) existence of power energy spectra in kk-space, and 2) existence of "gaps" in this spectra corresponding to the resonance clustering. Accordingly, three wave turbulent regimes are singled out: \emph{kinetic}, described by wave kinetic equations and power energy spectra; \emph{discrete}, characterized by resonance clustering; and \emph{mesoscopic}, where both types of wave field time evolution coexist. In this paper we study integrable dynamics of resonance clusters appearing in discrete and mesoscopic wave turbulent regimes. Using a novel method based on the notion of dynamical invariant we establish that some of the frequently met clusters are integrable in quadratures for arbitrary initial conditions and some others -- only for particular initial conditions. We also identify chaotic behaviour in some cases. Physical implications of the results obtained are discussed.Comment: This is Work In Progress carried out in years 2008-2008 and partly supported by Austrian FWF-project P20164-N18 and 6 EU Programme under the project SCIEnce, Contract No. 02613

    Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green's function

    Full text link
    Two discretizations, linear and nonlinear, of basic notions of the complex analysis are considered. The underlying lattice is an arbitrary quasicrystallic rhombic tiling of a plane. The linear theory is based on the discrete Cauchy-Riemann equations, the nonlinear one is based on the notion of circle patterns. We clarify the role of the rhombic condition in both theories: under this condition the corresponding equations are integrable (in the sense of 3D consistency, which yields also the existense of zero curvature representations, B"acklund transformations etc.). We demonstrate that in some precise sense the linear theory is a linearization of the nonlinear one: the tangent space to a set of integrable circle patterns at an isoradial point consists of discrete holomorphic functions which take real (imaginary) values on two sublattices. We extend solutions of the basic equations of both theories to Z^d, where d is the number of different edge slopes of the quasicrystallic tiling. In the linear theory, we give an integral representation of an arbitrary discrete holomorphic function, thus proving the density of discrete exponential functions. We introduce the d-dimensional discrete logarithmic function which is a generalization of Kenyon's discrete Green's function, and uncover several new properties of this function. We prove that it is an isomonodromic solution of the discrete Cauchy-Riemann equations, and that it is a tangent vector to the space of integrable circle patterns along the family of isomonodromic discrete power functions.Comment: 40 page

    Systolically extremal nonpositively curved surfaces are flat with finitely many singularities

    Full text link
    The regularity of systolically extremal surfaces is a notoriously difficult problem already discussed by M. Gromov in 1983, who proposed an argument toward the existence of L2L^2-extremizers exploiting the theory of rr-regularity developed by P. A. White and others by the 1950s. We propose to study the problem of systolically extremal metrics in the context of generalized metrics of nonpositive curvature. A natural approach would be to work in the class of Alexandrov surfaces of finite total curvature, where one can exploit the tools of the completion provided in the context of Radon measures as studied by Reshetnyak and others. However the generalized metrics in this sense still don't have enough regularity. Instead, we develop a more hands-on approach and show that, for each genus, every systolically extremal nonpositively curved surface is piecewise flat with finitely many conical singularities. This result exploits a decomposition of the surface into flat systolic bands and nonsystolic polygonal regions, as well as the combinatorial/topological estimates of Malestein-Rivin-Theran, Przytycki, Aougab-Biringer-Gaster and Greene on the number of curves meeting at most once, combined with a kite excision move. The move merges pairs of conical singularities on a surface of genus gg and leads to an asymptotic upper bound g4+ϵg^{4+\epsilon} on the number of singularities.Comment: 31 pages, 5 figures, to appear in Journal of Topology and Analysi

    Miquel dynamics for circle patterns

    Full text link
    We study a new discrete-time dynamical system on circle patterns with the combinatorics of the square grid. This dynamics, called Miquel dynamics, relies on Miquel's six circles theorem. We provide a coordinatization of the appropriate space of circle patterns on which the dynamics acts and use it to derive local recurrence formulas. Isoradial circle patterns arise as periodic points of Miquel dynamics. Furthermore, we prove that certain signed sums of intersection angles are preserved by the dynamics. Finally, when the initial circle pattern is spatially biperiodic with a fundamental domain of size two by two, we show that the appropriately normalized motion of intersection points of circles takes place along an explicit quartic curve.Comment: 34 pages, 24 figures. Final version to appear in Int. Math. Res. Notice

    Variational principles for circle patterns

    Full text link
    A Delaunay cell decomposition of a surface with constant curvature gives rise to a circle pattern, consisting of the circles which are circumscribed to the facets. We treat the problem whether there exists a Delaunay cell decomposition for a given (topological) cell decomposition and given intersection angles of the circles, whether it is unique and how it may be constructed. Somewhat more generally, we allow cone-like singularities in the centers and intersection points of the circles. We prove existence and uniqueness theorems for the solution of the circle pattern problem using a variational principle. The functionals (one for the euclidean, one for the hyperbolic case) are convex functions of the radii of the circles. The analogous functional for the spherical case is not convex, hence this case is treated by stereographic projection to the plane. From the existence and uniqueness of circle patterns in the sphere, we derive a strengthened version of Steinitz' theorem on the geometric realizability of abstract polyhedra. We derive the variational principles of Colin de Verdi\`ere, Br\"agger, and Rivin for circle packings and circle patterns from our variational principles. In the case of Br\"agger's and Rivin's functionals. Leibon's functional for hyperbolic circle patterns cannot be derived directly from our functionals. But we construct yet another functional from which both Leibon's and our functionals can be derived. We present Java software to compute and visualize circle patterns.Comment: PhD thesis, iv+94 pages, many figures (mostly vector graphics

    Some Remarks on Kite Pseudo Effect Algebras

    Full text link
    Recently a new family of pseudo effect algebras, called kite pseudo effect algebras, was introduced. Such an algebra starts with a po-group GG, a set II and with two bijections λ,ρ:II.\lambda,\rho:I \to I. Using a clever construction on the ordinal sum of (G+)I(G^+)^I and (G)I,(G^-)^I, we can define a pseudo effect algebra which can be non-commutative even if GG is an Abelian po-group. In the paper we give a characterization of subdirect product of subdirectly irreducible kite pseudo effect algebras, and we show that every kite pseudo effect algebra is an interval in a unital po-loop.Comment: arXiv admin note: text overlap with arXiv:1306.030

    Constraint capture and maintenance in engineering design

    Get PDF
    The Designers' Workbench is a system, developed by the Advanced Knowledge Technologies (AKT) consortium to support designers in large organizations, such as Rolls-Royce, to ensure that the design is consistent with the specification for the particular design as well as with the company's design rule book(s). In the principal application discussed here, the evolving design is described against a jet engine ontology. Design rules are expressed as constraints over the domain ontology. Currently, to capture the constraint information, a domain expert (design engineer) has to work with a knowledge engineer to identify the constraints, and it is then the task of the knowledge engineer to encode these into the Workbench's knowledge base (KB). This is an error prone and time consuming task. It is highly desirable to relieve the knowledge engineer of this task, and so we have developed a system, ConEditor+ that enables domain experts themselves to capture and maintain these constraints. Further we hypothesize that in order to appropriately apply, maintain and reuse constraints, it is necessary to understand the underlying assumptions and context in which each constraint is applicable. We refer to them as “application conditions” and these form a part of the rationale associated with the constraint. We propose a methodology to capture the application conditions associated with a constraint and demonstrate that an explicit representation (machine interpretable format) of application conditions (rationales) together with the corresponding constraints and the domain ontology can be used by a machine to support maintenance of constraints. Support for the maintenance of constraints includes detecting inconsistencies, subsumption, redundancy, fusion between constraints and suggesting appropriate refinements. The proposed methodology provides immediate benefits to the designers and hence should encourage them to input the application conditions (rationales)
    corecore