170 research outputs found

    An efficient automated parameter tuning framework for spiking neural networks

    Get PDF
    As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning the enormous number of open parameters in these models becomes a difficult challenge. SNNs have been used to successfully model complex neural circuits that explore various neural phenomena such as neural plasticity, vision systems, auditory systems, neural oscillations, and many other important topics of neural function. Additionally, SNNs are particularly well-adapted to run on neuromorphic hardware that will support biological brain-scale architectures. Although the inclusion of realistic plasticity equations, neural dynamics, and recurrent topologies has increased the descriptive power of SNNs, it has also made the task of tuning these biologically realistic SNNs difficult. To meet this challenge, we present an automated parameter tuning framework capable of tuning SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned to give V1 simple cell-like tuning curve responses and produce self-organizing receptive fields (SORFs) when presented with a random sequence of counterphase sinusoidal grating stimuli. A performance analysis comparing the GPU-accelerated implementation to a single-threaded central processing unit (CPU) implementation was carried out and showed a speedup of 65× of the GPU implementation over the CPU implementation, or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the parameter value solutions found in the tuned SNN were studied and found to be stable and repeatable. The automated parameter tuning framework presented here will be of use to both the computational neuroscience and neuromorphic engineering communities, making the process of constructing and tuning large-scale SNNs much quicker and easier

    Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    Get PDF
    [Abstract] Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure–Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/049Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    Multi - objective cooperative neuro - evolution of recurrent neural networks for time series prediction

    Get PDF
    Cooperative coevolution is an evolutionary computation method which solves a problem by decomposing it into smaller subcomponents. Multi-objective optimization deals with conflicting objectives and produces multiple optimal solutions instead of a single global optimal solution. In previous work, a multi-objective cooperative co-evolutionary method was introduced for training feedforward neural networks on time series problems. In this paper, the same method is used for training recurrent neural networks. The proposed approach is tested on time series problems in which the different time-lags represent the different objectives. Multiple pre-processed datasets distinguished by their time-lags are used for training and testing. This results in the discovery of a single neural network that can correctly give predictions for data pre-processed using different time-lags. The method is tested on several benchmark time series problems on which it gives a competitive performance in comparison to the methods in the literature

    SeVuc: A study on the Security Vulnerabilities of Capsule Networks against adversarial attacks

    Get PDF
    Capsule Networks (CapsNets) preserve the hierarchical spatial relationships between objects, and thereby bear the potential to surpass the performance of traditional Convolutional Neural Networks (CNNs) in performing tasks like image classification. This makes CapsNets suitable for the smart cyber-physical systems (CPS), where a large amount of training data may not be available. A large body of work has explored adversarial examples for CNNs, but their effectiveness on CapsNets has not yet been studied systematically. In our work, we perform an analysis to study the vulnerabilities in CapsNets to adversarial attacks. These perturbations, added to the test inputs, are small and imperceptible to humans, but can fool the network to mispredict. We propose a greedy algorithm to automatically generate imperceptible adversarial examples in a black-box attack scenario. We show that this kind of attacks, when applied to the German Traffic Sign Recognition Benchmark and CIFAR10 datasets, mislead CapsNets in making a correct classification, which can be catastrophic for smart CPS, like autonomous vehicles. Moreover, we apply the same kind of adversarial attacks to a 5-layer CNN (LeNet), to a 9-layer CNN (VGGNet), and to a 20-layer CNN (ResNet), and analyze the outcome, compared to the CapsNets, to study their different behaviors under the adversarial attacks

    Enhancing competitive island cooperative neuro - evolution through backpropagation for pattern classification

    Get PDF
    Cooperative coevolution is a promising method for training neural networks which is also known as cooperative neuro-evolution. Cooperative neuro-evolution has been used for pattern classification, time series prediction and global optimisation problems. In the past, competitive island based cooperative coevolution has been proposed that employed different instances of problem decomposition methods for competition. Neuro-evolution has limitations in terms of training time although they are known as global search methods. Backpropagation algorithm employs gradient descent which helps in faster convergence which is needed for neuro-evolution. Backpropagation suffers from premature convergence and its combination with neuro-evolution can help eliminate the weakness of both the approaches. In this paper, we propose a competitive island cooperative neuro-evolutionary method that takes advantage of the strengths of gradient descent and neuro-evolution. We use feedforward neural networks on benchmark pattern classification problems to evaluate the performance of the proposed algorithm. The results show improved performance when compared to related methods

    3D model reconstruction using neural gas accelerated on GPU

    Get PDF
    In this work, we propose the use of the neural gas (NG), a neural network that uses an unsupervised Competitive Hebbian Learning (CHL) rule, to develop a reverse engineering process. This is a simple and accurate method to reconstruct objects from point clouds obtained from multiple overlapping views using low-cost sensors. In contrast to other methods that may need several stages that include downsampling, noise filtering and many other tasks, the NG automatically obtains the 3D model of the scanned objects. To demonstrate the validity of our proposal we tested our method with several models and performed a study of the neural network parameterization computing the quality of representation and also comparing results with other neural methods like growing neural gas and Kohonen maps or classical methods like Voxel Grid. We also reconstructed models acquired by low cost sensors that can be used in virtual and augmented reality environments for redesign or manipulation purposes. Since the NG algorithm has a strong computational cost we propose its acceleration. We have redesigned and implemented the NG learning algorithm to fit it onto Graphics Processing Units using CUDA. A speed-up of 180× faster is obtained compared to the sequential CPU version.This work was partially funded by the Spanish Government DPI2013-40534-R grant
    corecore