2,648 research outputs found

    Robust spatial memory maps encoded in networks with transient connections

    Full text link
    The spiking activity of principal cells in mammalian hippocampus encodes an internalized neuronal representation of the ambient space---a cognitive map. Once learned, such a map enables the animal to navigate a given environment for a long period. However, the neuronal substrate that produces this map remains transient: the synaptic connections in the hippocampus and in the downstream neuronal networks never cease to form and to deteriorate at a rapid rate. How can the brain maintain a robust, reliable representation of space using a network that constantly changes its architecture? Here, we demonstrate, using novel Algebraic Topology techniques, that cognitive map's stability is a generic, emergent phenomenon. The model allows evaluating the effect produced by specific physiological parameters, e.g., the distribution of connections' decay times, on the properties of the cognitive map as a whole. It also points out that spatial memory deterioration caused by weakening or excessive loss of the synaptic connections may be compensated by simulating the neuronal activity. Lastly, the model explicates functional importance of the complementary learning systems for processing spatial information at different levels of spatiotemporal granularity, by establishing three complementary timescales at which spatial information unfolds. Thus, the model provides a principal insight into how can the brain develop a reliable representation of the world, learn and retain memories despite complex plasticity of the underlying networks and allows studying how instabilities and memory deterioration mechanisms may affect learning process.Comment: 24 pages, 10 figures, 4 supplementary figure

    Entropy production and coarse-graining in Markov processes

    Full text link
    We study the large time fluctuations of entropy production in Markov processes. In particular, we consider the effect of a coarse-graining procedure which decimates {\em fast states} with respect to a given time threshold. Our results provide strong evidence that entropy production is not directly affected by this decimation, provided that it does not entirely remove loops carrying a net probability current. After the study of some examples of random walks on simple graphs, we apply our analysis to a network model for the kinesin cycle, which is an important biomolecular motor. A tentative general theory of these facts, based on Schnakenberg's network theory, is proposed.Comment: 18 pages, 13 figures, submitted for publicatio

    Entropy production and coarse-graining in Markov processes

    Get PDF
    We study the large time fluctuations of entropy production in Markov processes. In particular, we consider the effect of a coarse-graining procedure which decimates {\em fast states} with respect to a given time threshold. Our results provide strong evidence that entropy production is not directly affected by this decimation, provided that it does not entirely remove loops carrying a net probability current. After the study of some examples of random walks on simple graphs, we apply our analysis to a network model for the kinesin cycle, which is an important biomolecular motor. A tentative general theory of these facts, based on Schnakenberg's network theory, is proposed.Comment: 18 pages, 13 figures, submitted for publicatio

    Competition and cooperation:aspects of dynamics in sandpiles

    Full text link
    In this article, we review some of our approaches to granular dynamics, now well known to consist of both fast and slow relaxational processes. In the first case, grains typically compete with each other, while in the second, they cooperate. A typical result of {\it cooperation} is the formation of stable bridges, signatures of spatiotemporal inhomogeneities; we review their geometrical characteristics and compare theoretical results with those of independent simulations. {\it Cooperative} excitations due to local density fluctuations are also responsible for relaxation at the angle of repose; the {\it competition} between these fluctuations and external driving forces, can, on the other hand, result in a (rare) collapse of the sandpile to the horizontal. Both these features are present in a theory reviewed here. An arena where the effects of cooperation versus competition are felt most keenly is granular compaction; we review here a random graph model, where three-spin interactions are used to model compaction under tapping. The compaction curve shows distinct regions where 'fast' and 'slow' dynamics apply, separated by what we have called the {\it single-particle relaxation threshold}. In the final section of this paper, we explore the effect of shape -- jagged vs. regular -- on the compaction of packings near their jamming limit. One of our major results is an entropic landscape that, while microscopically rough, manifests {\it Edwards' flatness} at a macroscopic level. Another major result is that of surface intermittency under low-intensity shaking.Comment: 36 pages, 23 figures, minor correction
    • …
    corecore