35 research outputs found

    Identity Management Framework for Internet of Things

    Get PDF

    Spectrum Utilisation and Management in Cognitive Radio Networks

    Get PDF

    A fuzzy approach to trust based access control in internet of things

    Get PDF

    Comparative study on encryption algorithms in cloud environment

    Get PDF
    Cloud computing is the Internet based development and used in computer technology where end users are provided with on demand shared resources, software and information. Security is being a major issue in the cloud computing, and it arise attention for Cloud Service Providers (CSP) and end users. Cloud computing security problem raises suspicions and makes many organizations refuse the idea of using the cloud in storing certain data within the cloud computing, especially data with high confidentiality. In addition, cloud users try to avoid being controlled by the CSPs. To avoid the data and data transmission from attackers, appropriate key management is necessary. Besides that, all the data is virtual and cloud is an open service and using a public network such as the Internet for application and services, which has security issues like authentication data loss. Encryption algorithm is a technique that is used to make data on the cloud secured. The aim of the study is to propose the authentication model using Kerberos technique for cloud environment to provides more security. This model can benefit by filtering the unauthorized access and also to reduce the memory usage of cloud provider against authentication checks for each user. It also acts as the third party between cloud server and users to allow authorized access to the cloud services. In this research, the performance of the algorithm is measured based on the computational and communication time. The performance is compared with three algorithms which are RSA, DSA and AES. Result experiment shows that RSA is performing much better than DSA and AES in terms of computational time

    Joint relay selection and bandwidth allocation for cooperative relay network

    Get PDF
    Cooperative communication that exploits multiple relay links offers significant performance improvement in terms of coverage and capacity for mobile data subscribers in hierarchical cellular network. Since cooperative communication utilizes multiple relay links, complexity of the network is increased due to the needs for efficient resource allocation. Besides, usage of multiple relay links leads to Inter- Cell Interference (ICI). The main objective of this thesis is to develop efficient resource allocation scheme minimizes the effect of ICI in cooperative relay network. The work proposed a joint relay selection and bandwidth allocation in cooperative relay network that ensures high achievable data rate with high user satisfaction and low outage percentage. Two types of network models are considered: single cell network and multicell network. Joint Relay Selection and Bandwidth Allocation with Spatial Reuse (JReSBA_SR) and Optimized JReSBA_SR (O_JReSBA_SR) are developed for single cell network. JReSBA_SR considers link quality and user demand for resource allocation, and is equipped with spatial reuse to support higher network load. O_JReSBA_SR is an enhancement of JReSBA_SR with decision strategy based on Markov optimization. In multicell network, JReSBA with Interference Mitigation (JReSBA_IM) and Optimized JReSBA_IM (O_JReSBA_IM) are developed. JReSBA_IM deploys sectored-Fractional Frequency Reuse (sectored- FFR) partitioning concept in order to minimize the effect of ICI between adjacent cells. The performance is evaluated in terms of cell achievable rate, Outage Percentage (OP) and Satisfaction Index (SI). The result for single cell network shows that JReSBA_SR has notably improved the cell achievable rate by 35.0%, with reduced OP by 17.7% compared to non-joint scheme at the expense of slight increase in complexity at Relay Node (RN). O_JReSBA_SR has further improved the cell achievable rate by 13.9% while maintaining the outage performance with reduced complexity compared to JReSBA_SR due to the effect of optimization. The result for multicell network shows that JReSBA_IM enhances the cell achievable rate up to 65.1% and reduces OP by 35.0% as compared to benchmark scheme. Similarly, O_JReSBA_IM has significantly reduced the RN complexity of JReSBA_IM scheme, improved the cell achievable rate up to 9.3% and reduced OP by 1.3%. The proposed joint resource allocation has significantly enhanced the network performance through spatial frequency reuse, efficient, fair and optimized resource allocation. The proposed resource allocation is adaptable to variation of network load and can be used in any multihop cellular network such as Long Term Evolution-Advanced (LTE-A) network
    corecore