251 research outputs found

    PrIC3: Property Directed Reachability for MDPs

    Get PDF
    IC3 has been a leap forward in symbolic model checking. This paper proposes PrIC3 (pronounced pricy-three), a conservative extension of IC3 to symbolic model checking of MDPs. Our main focus is to develop the theory underlying PrIC3. Alongside, we present a first implementation of PrIC3 including the key ingredients from IC3 such as generalization, repushing, and propagation

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit prĂ€sentiert AnsĂ€tze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlĂ€sslicher und klarer verstĂ€ndlich zu machen. Zuerst werden zwei Algorithmen fĂŒr heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte fĂŒr Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte fĂŒr Kosten und beschrĂ€nkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprĂŒnglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und OptimalitĂ€tsbeweise fĂŒr die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfĂ€hig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen ZustandsrĂ€umen sogar ĂŒbertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) fĂŒr die QualitĂ€tsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingefĂŒhrt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die KomplexitĂ€t der NN-Analyse in Kombination mit dem State Space Explosion Problem bewĂ€ltigt

    On the analysis of stochastic timed systems

    Get PDF
    The formal methods approach to develop reliable and efficient safety- or performance-critical systems is to construct mathematically precise models of such systems on which properties of interest, such as safety guarantees or performance requirements, can be verified automatically. In this thesis, we present techniques that extend the reach of exhaustive and statistical model checking to verify reachability and reward-based properties of compositional behavioural models that support quantitative aspects such as real time and randomised decisions. We present two techniques that allow sound statistical model checking for the nondeterministic-randomised model of Markov decision processes. We investigate the relationship between two different definitions of the model of probabilistic timed automata, as well as potential ways to apply statistical model checking. Stochastic timed automata allow nondeterministic choices as well as nondeterministic and stochastic delays, and we present the first exhaustive model checking algorithm that allows their analysis. All the approaches introduced in this thesis are implemented as part of the Modest Toolset, which supports the construction and verification of models specified in the formal modelling language Modest. We conclude by applying this language and toolset to study novel distributed control strategies for photovoltaic microgenerators

    The relationship of (perceived) epistemic cognition to interaction with resources on the internet

    Get PDF
    Information seeking and processing are key literacy practices. However, they are activities that students, across a range of ages, struggle with. These information seeking processes can be viewed through the lens of epistemic cognition: beliefs regarding the source, justification, complexity, and certainty of knowledge. In the research reported in this article we build on established research in this area, which has typically used self-report psychometric and behavior data, and information seeking tasks involving closed-document sets. We take a novel approach in applying established self-report measures to a large-scale, naturalistic, study environment, pointing to the potential of analysis of dialogue, web-navigation – including sites visited – and other trace data, to support more traditional self-report mechanisms. Our analysis suggests that prior work demonstrating relationships between self-report indicators is not paralleled in investigation of the hypothesized relationships between self-report and trace-indicators. However, there are clear epistemic features of this trace data. The article thus demonstrates the potential of behavioral learning analytic data in understanding how epistemic cognition is brought to bear in rich information seeking and processing tasks

    Efficient Sensitivity Analysis for Parametric Robust Markov Chains

    Get PDF
    We provide a novel method for sensitivity analysis of parametric robust Markov chains. These models incorporate parameters and sets of probability distributions to alleviate the often unrealistic assumption that precise probabilities are available. We measure sensitivity in terms of partial derivatives with respect to the uncertain transition probabilities regarding measures such as the expected reward. As our main contribution, we present an efficient method to compute these partial derivatives. To scale our approach to models with thousands of parameters, we present an extension of this method that selects the subset of kk parameters with the highest partial derivative. Our methods are based on linear programming and differentiating these programs around a given value for the parameters. The experiments show the applicability of our approach on models with over a million states and thousands of parameters. Moreover, we embed the results within an iterative learning scheme that profits from having access to a dedicated sensitivity analysis

    Efficient Sensitivity Analysis for Parametric Robust Markov Chains

    Full text link
    We provide a novel method for sensitivity analysis of parametric robust Markov chains. These models incorporate parameters and sets of probability distributions to alleviate the often unrealistic assumption that precise probabilities are available. We measure sensitivity in terms of partial derivatives with respect to the uncertain transition probabilities regarding measures such as the expected reward. As our main contribution, we present an efficient method to compute these partial derivatives. To scale our approach to models with thousands of parameters, we present an extension of this method that selects the subset of kk parameters with the highest partial derivative. Our methods are based on linear programming and differentiating these programs around a given value for the parameters. The experiments show the applicability of our approach on models with over a million states and thousands of parameters. Moreover, we embed the results within an iterative learning scheme that profits from having access to a dedicated sensitivity analysis.Comment: To be presented at CAV 202
    • 

    corecore