33,466 research outputs found

    Two Classical Queries versus One Quantum Query

    Get PDF
    In this note we study the power of so called query-limited computers. We compare the strength of a classical computer that is allowed to ask two questions to an NP-oracle with the strength of a quantum computer that is allowed only one such query. It is shown that any decision problem that requires two parallel (non-adaptive) SAT-queries on a classical computer can also be solved exactly by a quantum computer using only one SAT-oracle call, where both computations have polynomial time-complexity. Such a simulation is generally believed to be impossible for a one-query classical computer. The reduction also does not hold if we replace the SAT-oracle by a general black-box. This result gives therefore an example of how a quantum computer is probably more powerful than a classical computer. It also highlights the potential differences between quantum complexity results for general oracles when compared to results for more structured tasks like the SAT-problem.Comment: 6 pages, LaTeX2e, no figures, minor changes and correction

    Web assisted teaching: an undergraduate experience

    Get PDF
    The emergence of the Internet has created a number of claims as to the future of education and the possibility of dramatically changing the way in which education is delivered. Much of the attention has focussed on the adoption of teaching methods that are solely web-based. We set out to incorporate web-based teaching as support for more traditional teaching methods to improve the learning outcomes for students. This first step into web-based teaching was developed to harness the benefits of web-based teaching tools without supplanting traditional teaching methods. The aim of this paper is to report our experience with web-assisted teaching in two undergraduate courses, Accounting Information Systems and Management Accounting Services, during 2000. The paper evaluates the approach taken and proposes a tentative framework for developing future web-assisted teaching applications. We believe that web-assisted and web-based teaching are inevitable outcomes of the telecommunications and computer revolution and that academics cannot afford to become isolated from the on-line world. A considered approach is needed to ensure the integration of web-based features into the overall structure of a course. The components of the course material and the learning experiences students are exposed to need to be structured and delivered in a way that ensures they support student learning rather than replacing one form of learning with another. Therefore a careful consideration of the structure, content, level of detail and time of delivery needs to be integrated to create a course structure that provides a range of student learning experiences that are complimentary rather than competing. The feedback was positive from both extramural (distance) and internal students, demonstrating to us that web sites can be used as an effective teaching tool in support of more traditional teaching methods as well as a tool for distance education. The ability to harness the positives of the web in conjunction with more traditional teaching modes is one that should not be overlooked in the move to adopt web based instruction methods. Web-based teaching need not be seen as an all or nothing divide but can be used as a useful way of improving the range and type of learning experiences open to students. The Web challenges traditional methods and thinking but it also provides tools to develop innovative solutions to both distance and on campus learning. Further research is needed to determine how we can best meet the needs of our students while maintaining high quality learning outcomes

    Search Interfaces for Mathematicians

    Full text link
    Access to mathematical knowledge has changed dramatically in recent years, therefore changing mathematical search practices. Our aim with this study is to scrutinize professional mathematicians' search behavior. With this understanding we want to be able to reason why mathematicians use which tool for what search problem in what phase of the search process. To gain these insights we conducted 24 repertory grid interviews with mathematically inclined people (ranging from senior professional mathematicians to non-mathematicians). From the interview data we elicited patterns for the user group "mathematicians" that can be applied when understanding design issues or creating new designs for mathematical search interfaces.Comment: conference article "CICM'14: International Conference on Computer Mathematics 2014", DML-Track: Digital Math Libraries 17 page

    Characterizations of User Web Revisit Behavior

    Get PDF
    In this article we update and extend on earlier long-term studies on user's page revisit behavior. Revisits ar

    Quantum Bounded Query Complexity

    Get PDF
    We combine the classical notions and techniques for bounded query classes with those developed in quantum computing. We give strong evidence that quantum queries to an oracle in the class NP does indeed reduce the query complexity of decision problems. Under traditional complexity assumptions, we obtain an exponential speedup between the quantum and the classical query complexity of function classes. For decision problems and function classes we obtain the following results: o P_||^NP[2k] is included in EQP_||^NP[k] o P_||^NP[2^(k+1)-2] is included in EQP^NP[k] o FP_||^NP[2^(k+1)-2] is included in FEQP^NP[2k] o FP_||^NP is included in FEQP^NP[O(log n)] For sets A that are many-one complete for PSPACE or EXP we show that FP^A is included in FEQP^A[1]. Sets A that are many-one complete for PP have the property that FP_||^A is included in FEQP^A[1]. In general we prove that for any set A there is a set X such that FP^A is included in FEQP^X[1], establishing that no set is superterse in the quantum setting.Comment: 11 pages LaTeX2e, no figures, accepted for CoCo'9

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Local Search in Unstructured Networks

    Full text link
    We review a number of message-passing algorithms that can be used to search through power-law networks. Most of these algorithms are meant to be improvements for peer-to-peer file sharing systems, and some may also shed some light on how unstructured social networks with certain topologies might function relatively efficiently with local information. Like the networks that they are designed for, these algorithms are completely decentralized, and they exploit the power-law link distribution in the node degree. We demonstrate that some of these search algorithms can work well on real Gnutella networks, scale sub-linearly with the number of nodes, and may help reduce the network search traffic that tends to cripple such networks.Comment: v2 includes minor revisions: corrections to Fig. 8's caption and references. 23 pages, 10 figures, a review of local search strategies in unstructured networks, a contribution to `Handbook of Graphs and Networks: From the Genome to the Internet', eds. S. Bornholdt and H.G. Schuster (Wiley-VCH, Berlin, 2002), to be publishe

    Analysis of approximate nearest neighbor searching with clustered point sets

    Full text link
    We present an empirical analysis of data structures for approximate nearest neighbor searching. We compare the well-known optimized kd-tree splitting method against two alternative splitting methods. The first, called the sliding-midpoint method, which attempts to balance the goals of producing subdivision cells of bounded aspect ratio, while not producing any empty cells. The second, called the minimum-ambiguity method is a query-based approach. In addition to the data points, it is also given a training set of query points for preprocessing. It employs a simple greedy algorithm to select the splitting plane that minimizes the average amount of ambiguity in the choice of the nearest neighbor for the training points. We provide an empirical analysis comparing these two methods against the optimized kd-tree construction for a number of synthetically generated data and query sets. We demonstrate that for clustered data and query sets, these algorithms can provide significant improvements over the standard kd-tree construction for approximate nearest neighbor searching.Comment: 20 pages, 8 figures. Presented at ALENEX '99, Baltimore, MD, Jan 15-16, 199

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Document Distance for the Automated Expansion of Relevance Judgements for Information Retrieval Evaluation

    Full text link
    This paper reports the use of a document distance-based approach to automatically expand the number of available relevance judgements when these are limited and reduced to only positive judgements. This may happen, for example, when the only available judgements are extracted from a list of references in a published review paper. We compare the results on two document sets: OHSUMED, based on medical research publications, and TREC-8, based on news feeds. We show that evaluations based on these expanded relevance judgements are more reliable than those using only the initially available judgements, especially when the number of available judgements is very limited.Comment: SIGIR 2014 Workshop on Gathering Efficient Assessments of Relevanc
    corecore