121 research outputs found

    Functional Analysis of Artificial Neural Network for Dataset Classification

    Get PDF
    Classification is one of the most active research and application areas of artificial neural networks (ANN). One of the difficulties in using ANN is to find the most suitable combination of training, learning and transfer function for classification of data sets with increasing number of features and classified sets. In this paper we have studied the effect of different combinations of functions while using artificial neural network as a classifier and analyzed the suitability of these functions for different kinds of datasets. The appropriateness of the proposed work has been determined on the basis of mean square error, rate of convergence, and accuracy of the classified dataset. Our inferences are based on the simulation results over the datasets used.

    Deep Learning Assisted Automated Assessment of Thalassaemia from Haemoglobin Electrophoresis Images

    Get PDF
    Haemoglobin (Hb) electrophoresis is a method of blood testing used to detect thalassaemia. However, the interpretation of the result of the electrophoresis test itself is a complex task. Expert haematologists, specifically in developing countries, are relatively few in number and are usually overburdened. To assist them with their workload, in this paper we present a novel method for the automated assessment of thalassaemia using Hb electrophoresis images. Moreover, in this study we compile a large Hb electrophoresis image dataset, consisting of 103 strips containing 524 electrophoresis images with a clear consensus on the quality of electrophoresis obtained from 824 subjects. The proposed methodology is split into two parts: (1) single-patient electrophoresis image segmentation by means of the lane extraction technique, and (2) binary classification (normal or abnormal) of the electrophoresis images using state-of-the-art deep convolutional neural networks (CNNs) and using the concept of transfer learning. Image processing techniques including filtering and morphological operations are applied for object detection and lane extraction to automatically separate the lanes and classify them using CNN models. Seven different CNN models (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, SqueezeNet and MobileNetV2) were investigated in this study. InceptionV3 outperformed the other CNNs in detecting thalassaemia using Hb electrophoresis images. The accuracy, precision, recall, f1-score, and specificity in the detection of thalassaemia obtained with the InceptionV3 model were 95.8%, 95.84%, 95.8%, 95.8% and 95.8%, respectively. MobileNetV2 demonstrated an accuracy, precision, recall, f1-score, and specificity of 95.72%, 95.73%, 95.72%, 95.7% and 95.72% respectively. Its performance was comparable with the best performing model, InceptionV3. Since it is a very shallow network, MobileNetV2 also provides the least latency in processing a single-patient image and it can be suitably used for mobile applications. The proposed approach, which has shown very high classification accuracy, will assist in the rapid and robust detection of thalassaemia using Hb electrophoresis images. 2022 by the authors.A part of the research was funded by the Higher Education Commission of Pakistan through its funded project of Artificial Intelligence in Healthcare, Intelligent Information Processing Lab, National Center of Artificial Intelligence.Scopu

    Blood

    Get PDF
    This book examines both the fluid and cellular components of blood. After the introductory section, the second section presents updates on various topics in hemodynamics. Chapters in this section discuss anemia, 4D flow MRI in cardiology, cardiovascular complications of robot-assisted laparoscopic pelvic surgery, altered perfusion in multiple sclerosis, and hemodynamic laminar shear stress in oxidative homeostasis. The third section focuses on thalassemia with chapters on diagnosis and screening for thalassemia, high blood pressure in beta-thalassemia, and hepatitis C infection in thalassemia patients

    Beta Thalassemia Carriers detection empowered federated Learning

    Full text link
    Thalassemia is a group of inherited blood disorders that happen when hemoglobin, the protein in red blood cells that carries oxygen, is not made enough. It is found all over the body and is needed for survival. If both parents have thalassemia, a child's chance of getting it increases. Genetic counselling and early diagnosis are essential for treating thalassemia and stopping it from being passed on to future generations. It may be hard for healthcare professionals to differentiate between people with thalassemia carriers and those without. The current blood tests for beta thalassemia carriers are too expensive, take too long, and require too much screening equipment. The World Health Organization says there is a high death rate for people with thalassemia. Therefore, it is essential to find thalassemia carriers to act quickly. High-performance liquid chromatography (HPLC), the standard test method, has problems such as cost, time, and equipment needs. So, there must be a quick and cheap way to find people carrying the thalassemia gene. Using federated learning (FL) techniques, this study shows a new way to find people with the beta-thalassemia gene. FL allows data to be collected and processed on-site while following privacy rules, making it an excellent choice for sensitive health data. Researchers used FL to train a model for beta-thalassemia carriers by looking at the complete blood count results and red blood cell indices. The model was 92.38 % accurate at telling the difference between beta-thalassemia carriers and people who did not have the disease. The proposed FL model is better than other published methods in terms of how well it works, how reliable it is, and how private it is. This research shows a promising, quick, accurate, and low-cost way to find thalassemia carriers and opens the door for screening them on a large scale.Comment: pages 17, figures

    The Application of Evolutionary Algorithms to the Classification of Emotion from Facial Expressions

    Get PDF
    Emotions are an integral part of human daily life as they can influence behaviour. A reliable emotion detection system may help people in varied things, such as social contact, health care and gaming experience. Emotions can often be identified by facial expressions, but this can be difficult to achieve reliably as people are different and a person can mask or supress an expression. Instead of analysis on static image, the computing of the motion of an expression’s occurrence plays more important role for these reasons. The work described in this thesis considers an automated and objective approach to recognition of facial expressions using extracted optical flow, which may be a reliable alternative to human interpretation. The Farneback’s fast estimation has been used for the dense optical flow extraction. Evolutionary algorithms, inspired by Darwinian evolution, have been shown to perform well on complex,nonlinear datasets and are considered for the basis of this automated approach. Specifically, Cartesian Genetic Programming (CGP) is implemented, which can find computer programme that approaches user-defined tasks by the evolution of solutions, and modified to work as a classifier for the analysis of extracted flow data. Its performance compared with Support Vector Machine (SVM), which has been widely used in expression recognition problem, on a range of pre-recorded facial expressions obtained from two separate databases (MMI and FG-NET). CGP was shown flexible to optimise in the experiments: the imbalanced data classification problem is sharply reduced by applying an Area under Curve (AUC) based fitness function. Results presented suggest that CGP is capable to achieve better performance than SVM. An automatic expression recognition system has also been implemented based on the method described in the thesis. The future work is to propose investigation of an ensemble classifier implementing both CGP and SVM

    Algorithms and tools for splicing junction donor recognition in genomic DNA sequences

    Get PDF
    The consensus sequences at splicing junctions in genomic DNA are required for pre-mRNA breaking and rejoining which must be carried out precisely. Programs currently available for identification or prediction of transcribed sequences from within genomic DNA are far from being powerful enough to elucidate genomic structure completely[4]. In this research, we develop a degenerate pattern match algorithm for 5\u27 splicing site (Donor Site) recognition.. Using the Motif models we developed, we can mine out the degenerate pattern information from the consensus splicing junction sequences. Our experimental results show that, this algorithm can correctly recognize 93% of the total donor sites at the right positions in the test DNA group. And more than 91% of the donor sites the algorithm predicted are correct. These precision rates are higher than the best existing donor classification algorithm[25]. This research made a very important progress toward our full gene structure detection algorithm development
    • …
    corecore