4,269 research outputs found

    Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    Get PDF
    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence

    Image synthesis for SAR system, calibration and processor design

    Get PDF
    The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161ā€“173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37ā€“67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575ā€“585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167ā€“1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9ā€“14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208ā€“209, 2000. [48] M. KĀØoppen, C.H. Nowack and G. RĀØosel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195ā€“202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251ā€“267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175ā€“178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67ā€“73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169ā€“172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749ā€“750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167ā€“185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69ā€“87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674ā€“693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837ā€“842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367ā€“381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    Assessment of radar resolution requirements for soil moisture estimation from simulated satellite imagery

    Get PDF
    Radar simulations were performed at five-day intervals over a twenty-day period and used to estimate soil moisture from a generalized algorithm requiring only received power and the mean elevation of a test site near Lawrence, Kansas. The results demonstrate that the soil moisture of about 90% of the 20-m by 20-m pixel elements can be predicted with an accuracy of + or - 20% of field capacity within relatively flat agricultural portions of the test site. Radar resolutions of 93 m by 100 m with 23 looks or coarser gave the best results, largely because of the effects of signal fading. For the distribution of land cover categories, soils, and elevation in the test site, very coarse radar resolutions of 1 km by 1 km and 2.6 km by 3.1 km gave the best results for wet moisture conditions while a finer resolution of 93 m by 100 m was found to yield superior results for dry to moist soil conditions

    Change detection in SAR time-series based on the coefficient of variation

    Full text link
    This paper discusses change detection in SAR time-series. Firstly, several statistical properties of the coefficient of variation highlight its pertinence for change detection. Then several criteria are proposed. The coefficient of variation is suggested to detect any kind of change. Then other criteria based on ratios of coefficients of variations are proposed to detect long events such as construction test sites, or point-event such as vehicles. These detection methods are evaluated first on theoretical statistical simulations to determine the scenarios where they can deliver the best results. Then detection performance is assessed on real data for different types of scenes and sensors (Sentinel-1, UAVSAR). In particular, a quantitative evaluation is performed with a comparison of our solutions with state-of-the-art methods

    The planning of a South African airborne synthetic aperture radar measuring campaign

    Get PDF
    Bibliography: leaves 153-163.This thesis sets out the results of work done in preparation for a South African Airborne Synthetic Aperture Radar (SAR) measuring campaign envisaged for 1994/5. At present both airborne and spaceborne SARs have found a niche in remote sensing with applications in subsurface mapping, surface moisture mapping, vegetation mapping, rock type discrimination and Digital Elevation Modelling. Since these applications have considerable scientific and economic benefits, the Radar Remote Sensing Group at the University of Cape Town committed themselves to an airborne SAR campaign. The prime objective of the campaign is to provide the South African users with airborne SAR data and enable the Radar Remote Sensing Group to evaluate the usefulness of SAR as a remote sensing tool in South Africa
    • ā€¦
    corecore