989 research outputs found

    Oil spill detection from SAR image using SVM based classification

    Get PDF

    Oil Spills and Slicks imaged by Synthetic Aperture Radar

    Get PDF
    Oil spills and slicks occur in the ocean around the world due to natural seeps, oil extraction, transportation, and consumption. Satellite synthetic aperture radar (SAR) has proven to be an efficient tool for identifying and classifying oil on the sea surface. This information can be used to monitor areas for potential illegal marine discharge or to respond to an oil spill incident. When used to monitor shipping lanes or drilling platforms, timely analysis can identify offending parties and lead to prosecution. Following an oil spill such as that from the Deepwater Horizon rig in the Gulf of Mexico in 2010, SAR can be used to direct response activities and optimize available resources

    WEIBULL MULTIPLICATIVE MODEL AND MACHINE LEARNING MODELS FOR FULL-AUTOMATIC DARK-SPOT DETECTION FROM SAR IMAGES

    Get PDF
    As a major aspect of marine pollution, oil release into the sea has serious biological and environmental impacts. Among remote sensing systems (which is a tool that offers a non-destructive investigation method), synthetic aperture radar (SAR) can provide valuable synoptic information about the position and size of the oil spill due to its wide area coverage and day/night, and all-weather capabilities. In this paper we present a new automated method for oil-spill monitoring. A new approach is based on the combination of Weibull Multiplicative Model and machine learning techniques to differentiate between dark spots and the background. First, the filter created based on Weibull Multiplicative Model is applied to each sub-image. Second, the sub-image is segmented by two different neural networks techniques (Pulsed Coupled Neural Networks and Multilayer Perceptron Neural Networks). As the last step, a very simple filtering process is used to eliminate the false targets. The proposed approaches were tested on 20 ENVISAT and ERS2 images which contained dark spots. The same parameters were used in all tests. For the overall dataset, the average accuracies of 94.05 % and 95.20 % were obtained for PCNN and MLP methods, respectively. The average computational time for dark-spot detection with a 256 × 256 image in about 4 s for PCNN segmentation using IDL software which is the fastest one in this field at present. Our experimental results demonstrate that the proposed approach is very fast, robust and effective. The proposed approach can be applied to the future spaceborne SAR images

    Oil Spill Detection And Contingency Planning Using Radar Imagery and GIS

    Get PDF
    Shipping casualties often resulted in serious accidental spills as experienced in the Straits of Malacca in the past decade. Operational remote sensing and geographic information system (GIS) are important tools for oil spill research and development activities. The use of remote sensing and GIS has been making important contributions to environmental monitoring, modeling and management. The combined use of remotely sensed images and GIS data has received considerable interest in recent years to protect human life, and reduce the environmental consequences of both spills and cleanup efforts. It is necessary to identify vulnerable coastal locations before a spill happens, and promptly perform removal actions when an oil spill occurs, so that the protection priorities can be established and clean-up strategies recognized. In this project an oil spill contingency plan has been created for the Straits of Malacca in three steps as follow: (a) SAR data such as RADARSAT has been used to detect and map oil spills pattern on the Malaysian coastal waters. Information on detection, exact position and size of the oil spill can be identified by remote sensing in SAR images and then plotted on maps in GIS and a priority of the combat efforts and means according to the identified coastal sensitive areas can be carried out; (b) environmental sensitivity index (ESI) map; suggested to provide spill response teams with information about shoreline sensitivity and ranking based on vulnerability of the spill area. This map can show resources at risk in the event of an oil or hazardous substance spill; (c) Prediction of oil spill trajectory, using main seasonal surface currents and surface drift produced by winds. Hypothetical spill trajectories have been simulated for each of the potential launch areas across the entrance of the straits of Malacca. These simulations assumed more than hundred spills occurring in each seasons of the year from each launched area. A successful combating operation to a marine oil spill is dependent on a rapid response from the time the oil spill is reported until it has been fully combated. In order to optimize the decision support capability of the surveillance system for oil spill contingency planning, GIS database have been integrated with the detection tool. An automatic oil spill detection tool was established and information on the exact position and size of the oil spill is then visualized in GIS environment. The system offer opportunities for integration of oil drift forecast models by prediction of wind and current influence on the oil spill for risk assessment using EASI program in PCI software

    Oil-Spill Pollution Remote Sensing by Synthetic Aperture Radar

    Get PDF

    Offshore oil spill detection using synthetic aperture radar

    Get PDF
    Among the different types of marine pollution, oil spill has been considered as a major threat to the sea ecosystems. The source of the oil pollution can be located on the mainland or directly at sea. The sources of oil pollution at sea are discharges coming from ships, offshore platforms or natural seepage from sea bed. Oil pollution from sea-based sources can be accidental or deliberate. Different sensors to detect and monitor oil spills could be onboard vessels, aircraft, or satellites. Vessels equipped with specialised radars, can detect oil at sea but they can cover a very limited area. One of the established ways to monitor sea-based oil pollution is the use of satellites equipped with Synthetic Aperture Radar (SAR).The aim of the work presented in this thesis is to identify optimum set of feature extracted parameters and implement methods at various stages for oil spill detection from Synthetic Aperture Radar (SAR) imagery. More than 200 images of ERS-2, ENVSAT and RADARSAT 2 SAR sensor have been used to assess proposed feature vector for oil spill detection methodology, which involves three stages: segmentation for dark spot detection, feature extraction and classification of feature vector. Unfortunately oil spill is not only the phenomenon that can create a dark spot in SAR imagery. There are several others meteorological and oceanographic and wind induced phenomena which may lead to a dark spot in SAR imagery. Therefore, these dark objects also appear similar to the dark spot due to oil spill and are called as look-alikes. These look-alikes thus cause difficulty in detecting oil spill spots as their primary characteristic similar to oil spill spots. To get over this difficulty, feature extraction becomes important; a stage which may involve selection of appropriate feature extraction parameters. The main objective of this dissertation is to identify the optimum feature vector in order to segregate oil spill and ‘look-alike’ spots. A total of 44 Feature extracted parameters have been studied. For segmentation, four methods; based on edge detection, adaptive theresholding, artificial neural network (ANN) segmentation and the other on contrast split segmentation have been implemented. Spot features are extracted from both the dark spots themselves and their surroundings. Classification stage was performed using two different classification techniques, first one is based on ANN and the other based on a two-stage processing that combines classification tree analysis and fuzzy logic. A modified feature vector, including both new and improved features, is suggested for better description of different types of dark spots. An ANN classifier using full spectrum of feature parameters has also been developed and evaluated. The implemented methodology appears promising in detecting dark spots and discriminating oil spills from look-alikes and processing time is well below any operational service requirements

    Oil spill identification in visible sensor imaging using automated cross correlation with crude oil image filters

    Get PDF
    An algorithm for detection of crude oil spills in visible light images has been developed and tested on 50 documented crude oil spill images from Shell Petroleum Development Company (SPDC) Nigeria. A set of three 25 x 25 pixels crude oil filters, with unique red, green, and blue (RGB) colour values, homogeneity, and power spectrum density (PSD) features were cross-correlated with the documented spill images. The final crude oil spill Region of Interest (ROI) was determined by grouping interconnected pixels based on their proximity, and only selecting ROIs with an area greater than 5,000 pixels. The crude oil filter cross correlation algorithm demonstrated a sensitivity of 84% with a False Positive per Image (FPI) of 0.82. Future work includes volume estimation of detected spills using crude oil filters, and utilizing this information in the recommendation of appropriate spill clean-up and remediation procedures for the detected spills. Keywords: Crude Oil Spill Detection, Crude oil image filters, Cross correlation, Visible sensor imaging, Oil Spill Segmentation

    Oil Spill Segmentation in Fused Synthetic Aperture Radar Images

    Get PDF
    Synthetic Aperture Radar (SAR) satellite systems are very efficient in oil spill monitoring due to their capability to operate under all weather conditions. Systems such as the Envisat and RADARSAT have been used independently in many studies to detect oil spill. This paper presents an automatic feature based image registration and fusion algorithm for oil spill monitoring using SAR images. A range of metrics are used to evaluate the performance of the algorithm and to demonstrate the benefits of fusing SAR images of different modalities. The proposed framework has shown 45% improvement of the oil spill location when compared with the individual images before the fusio

    Automatic Delineation of Water Bodies in SAR Images with a Novel Stochastic Distance Approach

    Get PDF
    Coastal regions and surface waters are among the fundamental biological and social development resources worldwide. For this reason, it is essential to thoroughly monitor these regions to determine and characterize their geographical features and environmental health. These geographical regions, however, present several monitoring challenges when using remotely sensed imagery. Small water bodies tend to be surrounded by swamps, marshes, or vegetation, making accurate border detection difficult. Coastal waters, in turn, experience several phenomena due to winds, undercurrents, and waves, which also hamper the detection of environmental hazards like oil spills. In this work, we propose an automated segmentation algorithm that can be applied to these targets in airborne and spaceborne SAR images. The method is based on pointwise detection in fuzzy borders using a parameter estimation of the (Formula presented.) distribution, which has been successfully used in similar contexts. The underlying assumption is that the sought-for border separates regions with different textures, each having different distribution parameters. Then, stochastic distances can identify the most likely point where this parameter change occurs. A curve interpolation algorithm then estimates the actual contour of the body given the detected points. We assess the adequacy of eight stochastic distances that are mostly applied in the literature. We evaluate the performance of our method in terms of similarity between true and detected boundaries on simulated and actual SAR images, achieving promising results. The performance of our proposal is assessed by Hausdorff distance and Intersection over Union. In the case of synthetic data, the selection of the best stochastic distance depends on the parameters of the (Formula presented.) distribution. In contrast, the harmonic-mean and triangular distances produced the best results in detecting borders in three actual SAR images of lagoons. Finally, we present the results of our proposal applied to an image with oil spills using Bhattacharyya, Hellinger, and Jensen–Shannon distances.Fil: Rey, Andrea Alejandra. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Frery, Alejandro César. Victoria University Of Wellington; Nueva ZelandaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin
    corecore