2,910 research outputs found

    Automatic plant features recognition using stereo vision for crop monitoring

    Get PDF
    Machine vision and robotic technologies have potential to accurately monitor plant parameters which reflect plant stress and water requirements, for use in farm management decisions. However, autonomous identification of individual plant leaves on a growing plant under natural conditions is a challenging task for vision-guided agricultural robots, due to the complexity of data relating to various stage of growth and ambient environmental conditions. There are numerous machine vision studies that are concerned with describing the shape of leaves that are individually-presented to a camera. The purpose of these studies is to identify plant species, or for the autonomous detection of multiple leaves from small seedlings under greenhouse conditions. Machine vision-based detection of individual leaves and challenges presented by overlapping leaves on a developed plant canopy using depth perception properties under natural outdoor conditions is yet to be reported. Stereo vision has recently emerged for use in a variety of agricultural applications and is expected to provide an accurate method for plant segmentation and identification which can benefit from depth properties and robustness. This thesis presents a plant leaf extraction algorithm using a stereo vision sensor. This algorithm is used on multiple leaf segmentation and overlapping leaves separation using a combination of image features, specifically colour, shape and depth. The separation between the connected and the overlapping leaves relies on the measurement of the discontinuity in depth gradient for the disparity maps. Two techniques have been developed to implement this task based on global and local measurement. A geometrical plane from each segmented leaf can be extracted and used to parameterise a 3D model of the plant image and to measure the inclination angle of each individual leaf. The stem and branch segmentation and counting method was developed based on the vesselness measure and Hough transform technique. Furthermore, a method for reconstructing the segmented parts of hibiscus plants is presented and a 2.5D model is generated for the plant. Experimental tests were conducted with two different selected plants: cotton of different sizes, and hibiscus, in an outdoor environment under varying light conditions. The proposed algorithm was evaluated using 272 cotton and hibiscus plant images. The results show an observed enhancement in leaf detection when utilising depth features, where many leaves in various positions and shapes (single, touching and overlapping) were detected successfully. Depth properties were more effective in separating between occluded and overlapping leaves with a high separation rate of 84% and these can be detected automatically without adding any artificial tags on the leaf boundaries. The results exhibit an acceptable segmentation rate of 78% for individual plant leaves thereby differentiating the leaves from their complex backgrounds and from each other. The results present almost identical performance for both species under various lighting and environmental conditions. For the stem and branch detection algorithm, experimental tests were conducted on 64 colour images of both species under different environmental conditions. The results show higher stem and branch segmentation rates for hibiscus indoor images (82%) compared to hibiscus outdoor images (49.5%) and cotton images (21%). The segmentation and counting of plant features could provide accurate estimation about plant growth parameters which can be beneficial for many agricultural tasks and applications

    Cloud-based machine learning architecture for big data analysis

    Get PDF
    The use of machine-learning that leverages large amounts of data (big data) is increasingly important in many areas of business and research. To help cope with the demanding resources required by these applications, solutions including hardware platforms (e.g. graphics cards), more efficient algorithms (e.g. deep learning algorithms), and special software environments (e.g. tensor flow) have been developed. In addition, for specific applications, special optimisations are often developed based on the requirements of the particular application. This thesis also addresses the challenge of efficiency of machine learning over big data but does so in a way that is complementary to specialised hardware and algorithms, and in a way that is also independent of application and data type. The thesis has developed several types of general optimisations and implemented these on top of an underlying generic machine learning architecture. The generic machine learning architecture includes stages for segmentation, feature extraction, model building and classification. The optimisation components enhance this architecture in a general way that works with any datatype and any dataset, and where the optimisation responds to the needs of the particular application, and is self-adjusting for the particular dataset being processed. The optimisations developed are: model optimisation; feature optimisation; resources optimisation; cloud platform cost-benefit optimisation. Model optimisation involves evaluating multiple models in parallel, and using feedback on model performance to choose the best ones based on the dataset being processed. Feature optimisation involves evaluating various features and combinations of features, and then choosing those features that are most effective for classification. Resources optimisation involves dynamically adjusting compute instances to respond to the demands of an application. Cloud platform cost-benefit optimisation involves evaluating the cost of available public cloud compute instances, and determining appropriate cost-efficient instances depending on the needs of an application. General techniques of sampling, evaluation and feedback are used in several optimisation components. The underlying framework and optimisations have been implemented and deployed in a private cloud environment. Evaluation on various datasets ( image and text datasets) has shown these optimisation components to be effective, and provide useful generic components that can work in conjunction with other optimisations to address the challenging demands of machine learning over big data

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Understanding citizen science and environmental monitoring: final report on behalf of UK Environmental Observation Framework

    Get PDF
    Citizen science can broadly be defined as the involvement of volunteers in science. Over the past decade there has been a rapid increase in the number of citizen science initiatives. The breadth of environmental-based citizen science is immense. Citizen scientists have surveyed for and monitored a broad range of taxa, and also contributed data on weather and habitats reflecting an increase in engagement with a diverse range of observational science. Citizen science has taken many varied approaches from citizen-led (co-created) projects with local community groups to, more commonly, scientist-led mass participation initiatives that are open to all sectors of society. Citizen science provides an indispensable means of combining environmental research with environmental education and wildlife recording. Here we provide a synthesis of extant citizen science projects using a novel cross-cutting approach to objectively assess understanding of citizen science and environmental monitoring including: 1. Brief overview of knowledge on the motivations of volunteers. 2. Semi-systematic review of environmental citizen science projects in order to understand the variety of extant citizen science projects. 3. Collation of detailed case studies on a selection of projects to complement the semi-systematic review. 4. Structured interviews with users of citizen science and environmental monitoring data focussing on policy, in order to more fully understand how citizen science can fit into policy needs. 5. Review of technology in citizen science and an exploration of future opportunities

    Determining estuarine seagrass density measures from low altitude multispectral imagery flown by remotely piloted aircraft

    Get PDF
    Seagrass is the subject of significant conservation research. Seagrass is ecologically important and of significant value to human interests. Many seagrass species are thought to be in decline. Degradation of seagrass populations are linked to anthropogenic environmental issues. Effective management requires robust monitoring that is affordable at large scale. Remote sensing methods using satellite and aircraft imagery enable mapping of seagrass populations at landscape scale. Aerial monitoring of a seagrass population can require imagery of high spatial and/or spectral resolution for successful feature extraction across all levels of seagrass density. Remotely piloted aircraft (RPA) can operate close to the ground under precise flight control enabling repeated surveys in high detail with accurate revisit-positioning. This study evaluates a method for assessing intertidal estuarine seagrass (Zostera muelleri) presence/absence and coverage density using multispectral imagery collected by a remotely piloted aircraft (RPA) flying at 30 m above the estuary surface (2.7 cm ground sampling distance). The research was conducted at Wharekawa Harbour on the eastern coast of the Coromandel Peninsula, North Island, New Zealand. Differential drainage of residual ebb waters from the surface of an estuary at low tide creates a mosaic of drying sediment, draining surface and static shallow pooling that has potential to interfere with spectral observations. The field surveys demonstrated that despite minor shifts in the spectral coordinates of seagrass and other surface material, there was no apparent difference in image classification outcome from the time of bulk tidal water clearance to the time of returning tidal flood. For the survey specification tested, classification accuracy increased with decreasing segmentation scale. Pixel-based image analysis (PBIA) achieved higher classification accuracy than object-based image analysis (OBIA) assessed at a range of segmentation scales. Contaminating objects such as shells and detritus can become aggregated within polygon objects when OBIA is applied but remain as isolated objects under PBIA at this image resolution. There was clear separability of spectra for seagrass and sediment, but shell and detritus confounded the classification of seagrass density in some situations. High density seagrass was distinct from sediment, but classification error arose for sparse seagrass. Three classifiers (linear discriminant analysis, support vector machine and random forest) and three feature selection options (no selection, collinearity reduction and recursive feature elimination) were assessed for effect on classification performance. The random forest classifier yielded the highest classification accuracy, with no accuracy benefit gained from collinearity reduction or recursive feature elimination. Spectral vegetation indices and texture layers substantially improved classification accuracy. Object geometry made a negligible contribution to classification accuracy using mean-shift segmentation at this image-scale. The method achieved classification of seagrass density with up to 84% accuracy on a three-tier end-member class scale (low, medium, and high density) when using training data formed using visual interpretation of ground reference photography, and up to 93% accuracy using precisely measured seagrass leaf-area. Visual interpretation agreed with precisely measured seagrass leaf area 88% of the time with some misattribution at mid-density. Visual interpretation was substantially faster to apply than measuring the leaf area. A decile class scale for seagrass density correlated with actual leaf area measures more than the three-tier scale, however, was less accurate for absolute class attribution. The research demonstrates that seagrass feature extraction from RPA-flown imagery is a feasible and repeatable option for seagrass population monitoring and environmental reporting. Further calibration is required for whole- and multi-estuary application

    Design of a Real-Time Method for Detection and Evaluation of Corrosion in Vehicles

    Get PDF
    Automobiles endure several challenges when operating on the road that can degrade their performance, functionality, appearance, and overall utility. Although, corrosion is very ancient, it is the most dangerous hazard to an automobile. Corrosion can be defined as natural interaction between the metal and its surrounding atmosphere which results in oxidation of metal. This leads to change in metal properties and can be severely dangerous. One of the easiest ways to recognize corrosion is by using visual inspection methods. Visual inspection results are highly dependent on the operator’s way of analyzing corrosion and operator’s experience. Thus, visual inspection method lack standardization and is susceptible to human errors. In this research, an automated digital method is proposed to detect the surface corrosion and estimate the damage caused. The new approach has been designed to work effectively irrespective of the illumination levels, image dis-orientation and variance in rust texture. The proposed method in proven to be 96% accurate. Furthermore, the proposed method is designed in the form of a noncommercial, cloud-oriented app which is efficient, fast, low-cost, low-maintenance and possesses global accessibility

    Earth as Interface: Exploring chemical senses with Multisensory HCI Design for Environmental Health Communication

    Get PDF
    As environmental problems intensify, the chemical senses -that is smell and taste, are the most relevantsenses to evidence them.As such, environmental exposure vectors that can reach human beings comprise air,food, soil and water[1].Within this context, understanding the link between environmental exposures andhealth[2]is crucial to make informed choices, protect the environment and adapt to new environmentalconditions[3].Smell and taste lead therefore to multi-sensorial experiences which convey multi-layered information aboutlocal and global events[4]. However, these senses are usually absent when those problems are represented indigital systems. The multisensory HCIdesign framework investigateschemical sense inclusion withdigital systems[5]. Ongoing efforts tackledigitalization of smell and taste for digital delivery, transmission or substitution [6]. Despite experimentsproved technological feasibility, its dissemination depends on relevant applicationdevelopment[7].This thesis aims to fillthose gaps by demonstratinghow chemical senses provide the means to link environment and health based on scientific andgeolocation narratives [8], [9],[10]. We present a Multisensory HCI design process which accomplished symbolicdisplaying smell and taste and led us to a new multi-sensorial interaction system presented herein. We describe the conceptualization, design and evaluation of Earthsensum, an exploratory case study project.Earthsensumoffered to 16 participants in the study, environmental smell and taste experiences about real geolocations to participants of the study. These experiences were represented digitally using mobilevirtual reality (MVR) and mobile augmented reality (MAR). Its technologies bridge the real and digital Worlds through digital representations where we can reproduce the multi-sensorial experiences. Our study findings showed that the purposed interaction system is intuitive and can lead not only to a betterunderstanding of smell and taste perception as also of environmental problems. Participants comprehensionabout the link between environmental exposures and health was successful and they would recommend thissystem as education tools. Our conceptual design approach was validated and further developments wereencouraged.In this thesis,we demonstratehow to applyMultisensory HCI methodology to design with chemical senses. Weconclude that the presented symbolic representation model of smell and taste allows communicatingtheseexperiences on digital platforms. Due to its context-dependency, MVR and MAR platforms are adequatetechnologies to be applied for this purpose.Future developments intend to explore further the conceptual approach. These developments are centredon the use of the system to induce hopefully behaviourchange. Thisthesisopens up new application possibilities of digital chemical sense communication,Multisensory HCI Design and environmental health communication.À medida que os problemas ambientais se intensificam, os sentidos químicos -isto é, o cheiroe sabor, são os sentidos mais relevantes para evidenciá-los. Como tais, os vetores de exposição ambiental que podem atingir os seres humanos compreendem o ar, alimentos, solo e água [1]. Neste contexto, compreender a ligação entre as exposições ambientais e a saúde [2] é crucial para exercerescolhas informadas, proteger o meio ambiente e adaptar a novas condições ambientais [3]. O cheiroe o saborconduzemassima experiências multissensoriais que transmitem informações de múltiplas camadas sobre eventos locais e globais [4]. No entanto, esses sentidos geralmente estão ausentes quando esses problemas são representados em sistemas digitais. A disciplina do design de Interação Humano-Computador(HCI)multissensorial investiga a inclusão dossentidos químicos em sistemas digitais [9]. O seu foco atual residena digitalização de cheirose sabores para o envio, transmissão ou substituiçãode sentidos[10]. Apesar dasexperimentaçõescomprovarem a viabilidade tecnológica, a sua disseminação está dependentedo desenvolvimento de aplicações relevantes [11]. Estatese pretendepreencher estas lacunas ao demonstrar como os sentidos químicos explicitama interconexãoentre o meio ambiente e a saúde, recorrendo a narrativas científicas econtextualizadasgeograficamente[12], [13], [14]. Apresentamos uma metodologiade design HCImultissensorial que concretizouum sistema de representação simbólica de cheiro e sabor e nos conduziu a um novo sistema de interação multissensorial, que aqui apresentamos. Descrevemos o nosso estudo exploratório Earthsensum, que integra aconceptualização, design e avaliação. Earthsensumofereceu a 16participantes do estudo experiências ambientais de cheiro e sabor relacionadas com localizações geográficasreais. Essas experiências foram representadas digitalmente através derealidade virtual(VR)e realidade aumentada(AR).Estas tecnologias conectamo mundo real e digital através de representações digitais onde podemos reproduzir as experiências multissensoriais. Os resultados do nosso estudo provaramque o sistema interativo proposto é intuitivo e pode levar não apenas a uma melhor compreensão da perceção do cheiroe sabor, como também dos problemas ambientais. O entendimentosobre a interdependência entre exposições ambientais e saúde teve êxitoe os participantes recomendariam este sistema como ferramenta para aeducação. A nossa abordagem conceptual foi positivamentevalidadae novos desenvolvimentos foram incentivados. Nesta tese, demonstramos como aplicar metodologiasde design HCImultissensorialpara projetar com ossentidos químicos. Comprovamosque o modelo apresentado de representação simbólica do cheiroe do saborpermite comunicar essas experiênciasem plataformas digitais. Por serem dependentesdocontexto, as plataformas de aplicações emVR e AR são tecnologias adequadaspara este fim.Desenvolvimentos futuros pretendem aprofundar a nossa abordagemconceptual. Em particular, aspiramos desenvolvera aplicaçãodo sistema para promover mudanças de comportamento. Esta tese propõenovas possibilidades de aplicação da comunicação dos sentidos químicos em plataformas digitais, dedesign multissensorial HCI e de comunicação de saúde ambiental

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports
    corecore