1,677 research outputs found

    Etiology-based classification of brain white matter hyperintensity on magnetic resonance imaging

    Get PDF
    Brain white matter lesions found upon magnetic resonance imaging are often observed in psychiatric or neurological patients. Individuals with these lesions present a more significant cognitive impairment when compared with individuals without them. We propose a computerized method to distinguish tissue containing white matter lesions of different etiologies (e.g., demyelinating or ischemic) using texture-based classifiers. Texture attributes were extracted from manually selected regions of interest and used to train and test supervised classifiers. Experiments were conducted to evaluate texture attribute discrimination and classifiers' performances. The most discriminating texture attributes were obtained from the gray-level histogram and from the co-occurrence matrix. The best classifier was the support vector machine, which achieved an accuracy of 87.9% in distinguishing lesions with different etiologies and an accuracy of 99.29% in distinguishing normal white matter from white matter lesions. (c) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)21COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPnão tem2012/21826-1; 2013/07559-

    TEXTURAL CLASSIFICATION OF MULTIPLE SCLEROSISLESIONS IN MULTIMODAL MRI VOLUMES

    Get PDF
    Background and objectives:Multiple Sclerosis is a common relapsing demyelinating diseasecausing the significant degradation of cognitive and motor skills and contributes towards areduced life expectancy of 5 to 10 years. The identification of Multiple Sclerosis Lesionsat early stages of a patient’s life can play a significant role in the diagnosis, treatment andprognosis for that individual. In recent years the process of disease detection has been aidedthrough the implementation of radiomic pipelines for texture extraction and classificationutilising Computer Vision and Machine Learning techniques. Eight Multiple Sclerosis Patient datasets have been supplied, each containing one standardclinical T2 MRI sequence and four diffusion-weighted sequences (T2, FA, ADC, AD, RD).This work proposes a Multimodal Multiple Sclerosis Lesion segmentation methodology util-ising supervised texture analysis, feature selection and classification. Three Machine Learningmodels were applied to Multimodal MRI data and tested using unseen patient datasets to eval-uate the classification performance of various extracted features, feature selection algorithmsand classifiers to MRI volumes uncommonly applied to MS Lesion detection. Method: First Order Statistics, Haralick Texture Features, Gray-Level Run-Lengths, His-togram of Oriented Gradients and Local Binary Patterns were extracted from MRI volumeswhich were minimally pre-processed using a skull stripping and background removal algorithm.mRMR and LASSO feature selection algorithms were applied to identify a subset of rankingsfor use in Machine Learning using Support Vector Machine, Random Forests and ExtremeLearning Machine classification. Results: ELM achieved a top slice classification accuracy of 85% while SVM achieved 79%and RF 78%. It was found that combining information from all MRI sequences increased theclassification performance when analysing unseen T2 scans in almost all cases. LASSO andmRMR feature selection methods failed to increase accuracy, and the highest-scoring groupof features were Haralick Texture Features, derived from Grey-Level Co-occurrence matrices

    Visual and Contextual Modeling for the Detection of Repeated Mild Traumatic Brain Injury.

    Get PDF
    Currently, there is a lack of computational methods for the evaluation of mild traumatic brain injury (mTBI) from magnetic resonance imaging (MRI). Further, the development of automated analyses has been hindered by the subtle nature of mTBI abnormalities, which appear as low contrast MR regions. This paper proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The contextual model estimates the progression of the disease using subject information, such as the time since injury and the knowledge about the location of mTBI. The visual model utilizes texture features in MRI along with a probabilistic support vector machine to maximize the discrimination in unimodal MR images. These two models are fused to obtain a final estimate of the locations of the mTBI lesion. The models are tested using a novel rodent model of repeated mTBI dataset. The experimental results demonstrate that the fusion of both contextual and visual textural features outperforms other state-of-the-art approaches. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    Spatial distribution of white matter degenerative lesions and cognitive dysfunction in relapsing-remitting multiple sclerosis patients

    Get PDF
    Aim. The aim of this study was to assess degenerative lesion localisation in the course of relapsing-remitting multiple sclerosis (RRMS) and to identify the association between localisation and the frequency of T1-hypointense lesions (black holes) with cognitive dysfunction. We also searched for neuroradiological predictors of cognitive dysfunction in patients. The clinical rationale for the study was previous research, and our own findings suggest that lesion localisation plays an important role in cognitive performance and neurological disability of MS patients. Material and methods. Forty-two patients were included in the study. All subjects underwent neuropsychological examination using Raven’s Coloured Progressive Matrices, a naming task from the Brief Repeatable Battery of Neuropsychological Tests, and attention to detail tests. Magnetic resonance imaging (MRI) was acquired on 1.5 Tesla scanner and black holes were manually segmented on T1-weighted volumetric images using the FMRIB Software Library. Linear regression was applied to establish a relationship between black hole volume per lobe and cognitive parameters. Bonferroni correction of voxelwise analysis was used to correct for multiple comparisons. Results. The following associations between black hole volume and cognition were identified: frontal lobes black hole volume was associated with phonemic verbal fluency (t = –4.013, p < 0.001), parietal black hole volume was associated with attention (t = –3.776, p < 0.001), and parietal and temporal black hole volumes were associated with nonverbal intelligence (p < 0.001). The volume of parietal black holes was the best predictor of cognitive dysfunction. Conclusions. Our approach, including measurement of focal axonal loss based on T1-volumetric MRI sequence and brief neuropsychological assessment, might improve personalised diagnostic and therapeutic decisions in clinical practice

    Amplifying the Effects of Contrast Agents on Magnetic Resonance Images Using a Deep Learning Method Trained on Synthetic Data

    Get PDF
    OBJECTIVES: Artificial intelligence (AI) methods can be applied to enhance contrast in diagnostic images beyond that attainable with the standard doses of contrast agents (CAs) normally used in the clinic, thus potentially increasing diagnostic power and sensitivity. Deep learning-based AI relies on training data sets, which should be sufficiently large and diverse to effectively adjust network parameters, avoid biases, and enable generalization of the outcome. However, large sets of diagnostic images acquired at doses of CA outside the standard-of-care are not commonly available. Here, we propose a method to generate synthetic data sets to train an "AI agent" designed to amplify the effects of CAs in magnetic resonance (MR) images. The method was fine-tuned and validated in a preclinical study in a murine model of brain glioma, and extended to a large, retrospective clinical human data set. MATERIALS AND METHODS: A physical model was applied to simulate different levels of MR contrast from a gadolinium-based CA. The simulated data were used to train a neural network that predicts image contrast at higher doses. A preclinical MR study at multiple CA doses in a rat model of glioma was performed to tune model parameters and to assess fidelity of the virtual contrast images against ground-truth MR and histological data. Two different scanners (3 T and 7 T, respectively) were used to assess the effects of field strength. The approach was then applied to a retrospective clinical study comprising 1990 examinations in patients affected by a variety of brain diseases, including glioma, multiple sclerosis, and metastatic cancer. Images were evaluated in terms of contrast-to-noise ratio and lesion-to-brain ratio, and qualitative scores. RESULTS: In the preclinical study, virtual double-dose images showed high degrees of similarity to experimental double-dose images for both peak signal-to-noise ratio and structural similarity index (29.49 dB and 0.914 dB at 7 T, respectively, and 31.32 dB and 0.942 dB at 3 T) and significant improvement over standard contrast dose (ie, 0.1 mmol Gd/kg) images at both field strengths. In the clinical study, contrast-to-noise ratio and lesion-to-brain ratio increased by an average 155% and 34% in virtual contrast images compared with standard-dose images. Blind scoring of AI-enhanced images by 2 neuroradiologists showed significantly better sensitivity to small brain lesions compared with standard-dose images (4.46/5 vs 3.51/5). CONCLUSIONS: Synthetic data generated by a physical model of contrast enhancement provided effective training for a deep learning model for contrast amplification. Contrast above that attainable at standard doses of gadolinium-based CA can be generated through this approach, with significant advantages in the detection of small low-enhancing brain lesions.</p
    corecore