19,930 research outputs found

    Inference Tools for Markov Random Fields on Lattices: The R Package mrf2d

    Get PDF
    Markov random fields on two-dimensional lattices are behind many image analysis methodologies. mrf2d provides tools for statistical inference on a class of discrete stationary Markov random field models with pairwise interaction, which includes many of the popular models such as the Potts model and texture image models. The package introduces representations of dependence structures and parameters, visualization functions and efficient (C++-based) implementations of sampling algorithms, common estimation methods and other key features of the model, providing a useful framework to implement algorithms and working with the model in general. This paper presents a description and details of the package, as well as some reproducible examples of usage

    Texture Analysis of the Retinal Nerve Fiber Layer in Fundus Images via Markov Random Fields

    Get PDF
    Abstract-This paper describes method for analysis of the texture created by retinal nerve fibers (RNF) via Markov Random Fields. The Causal Autoregressive Random (CAR) model is used to create a feature vector describing the changes in texture due to losses in RNF layer. It is shown that features based on CAR model can be used for discrimination between healthy and glaucomatous tissue using simple linear classifier. The classification error is slightly below 4% for the tested dataset

    Unsupervised Texture Segmentation using Active Contours and Local Distributions of Gaussian Markov Random Field Parameters

    No full text
    In this paper, local distributions of low order Gaussian Markov Random Field (GMRF) model parameters are proposed as texture features for unsupervised texture segmentation.Instead of using model parameters as texture features, we exploit the variations in parameter estimates found by model fitting in local region around the given pixel. Thespatially localized estimation process is carried out by maximum likelihood method employing a moderately small estimation window which leads to modeling of partial texturecharacteristics belonging to the local region. Hence significant fluctuations occur in the estimates which can be related to texture pattern complexity. The variations occurred in estimates are quantified by normalized local histograms. Selection of an accurate window size for histogram calculation is crucial and is achieved by a technique based on the entropy of textures. These texture features expand the possibility of using relativelylow order GMRF model parameters for segmenting fine to very large texture patterns and offer lower computational cost. Small estimation windows result in better boundarylocalization. Unsupervised segmentation is performed by integrated active contours, combining the region and boundary information. Experimental results on statistical and structural component textures show improved discriminative ability of the features compared to some recent algorithms in the literature

    An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation

    No full text
    In statistical model based texture feature extraction, features based on spatially varying parameters achievehigher discriminative performances compared to spatially constant parameters. In this paper we formulate anovel Bayesian framework which achieves texture characterization by spatially varying parameters based onGaussian Markov random fields. The parameter estimation is carried out by Metropolis-Hastings algorithm.The distributions of estimated spatially varying parameters are then used as successful discriminant texturefeatures in classification and segmentation. Results show that novel features outperform traditional GaussianMarkov random field texture features which use spatially constant parameters. These features capture bothpixel spatial dependencies and structural properties of a texture giving improved texture features for effectivetexture classification and segmentation

    Deep Markov Random Field for Image Modeling

    Full text link
    Markov Random Fields (MRFs), a formulation widely used in generative image modeling, have long been plagued by the lack of expressive power. This issue is primarily due to the fact that conventional MRFs formulations tend to use simplistic factors to capture local patterns. In this paper, we move beyond such limitations, and propose a novel MRF model that uses fully-connected neurons to express the complex interactions among pixels. Through theoretical analysis, we reveal an inherent connection between this model and recurrent neural networks, and thereon derive an approximated feed-forward network that couples multiple RNNs along opposite directions. This formulation combines the expressive power of deep neural networks and the cyclic dependency structure of MRF in a unified model, bringing the modeling capability to a new level. The feed-forward approximation also allows it to be efficiently learned from data. Experimental results on a variety of low-level vision tasks show notable improvement over state-of-the-arts.Comment: Accepted at ECCV 201

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161–173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37–67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575–585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167–1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9–14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208–209, 2000. [48] M. K¨oppen, C.H. Nowack and G. R¨osel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195–202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251–267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175–178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67–73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169–172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749–750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167–185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69–87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674–693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837–842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367–381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    A Statistical Modeling Approach to Computer-Aided Quantification of Dental Biofilm

    Full text link
    Biofilm is a formation of microbial material on tooth substrata. Several methods to quantify dental biofilm coverage have recently been reported in the literature, but at best they provide a semi-automated approach to quantification with significant input from a human grader that comes with the graders bias of what are foreground, background, biofilm, and tooth. Additionally, human assessment indices limit the resolution of the quantification scale; most commercial scales use five levels of quantification for biofilm coverage (0%, 25%, 50%, 75%, and 100%). On the other hand, current state-of-the-art techniques in automatic plaque quantification fail to make their way into practical applications owing to their inability to incorporate human input to handle misclassifications. This paper proposes a new interactive method for biofilm quantification in Quantitative light-induced fluorescence (QLF) images of canine teeth that is independent of the perceptual bias of the grader. The method partitions a QLF image into segments of uniform texture and intensity called superpixels; every superpixel is statistically modeled as a realization of a single 2D Gaussian Markov random field (GMRF) whose parameters are estimated; the superpixel is then assigned to one of three classes (background, biofilm, tooth substratum) based on the training set of data. The quantification results show a high degree of consistency and precision. At the same time, the proposed method gives pathologists full control to post-process the automatic quantification by flipping misclassified superpixels to a different state (background, tooth, biofilm) with a single click, providing greater usability than simply marking the boundaries of biofilm and tooth as done by current state-of-the-art methods.Comment: 10 pages, 7 figures, Journal of Biomedical and Health Informatics 2014. keywords: {Biomedical imaging;Calibration;Dentistry;Estimation;Image segmentation;Manuals;Teeth}, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6758338&isnumber=636350
    corecore