3,492 research outputs found

    Wavelet based segmentation of hyperspectral colon tissue imagery

    Get PDF
    Segmentation is an early stage for the automated classification of tissue cells between normal and malignant types. We present an algorithm for unsupervised segmentation of images of hyperspectral human colon tissue cells into their constituent parts by exploiting the spatial relationship between these constituent parts. This is done by employing a modification of the conventional wavelet based texture analysis, on the projection of hyperspectral image data in the first principal component direction. Results show that our algorithm is comparable to other more computationally intensive methods which exploit the spectral characteristics of the hyperspectral imagery data

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy

    Fuzzy spectral and spatial feature integration for classification of nonferrous materials in hyperspectral data

    Get PDF
    Hyperspectral data allows the construction of more elaborate models to sample the properties of the nonferrous materials than the standard RGB color representation. In this paper, the nonferrous waste materials are studied as they cannot be sorted by classical procedures due to their color, weight and shape similarities. The experimental results presented in this paper reveal that factors such as the various levels of oxidization of the waste materials and the slight differences in their chemical composition preclude the use of the spectral features in a simplistic manner for robust material classification. To address these problems, the proposed FUSSER (fuzzy spectral and spatial classifier) algorithm detailed in this paper merges the spectral and spatial features to obtain a combined feature vector that is able to better sample the properties of the nonferrous materials than the single pixel spectral features when applied to the construction of multivariate Gaussian distributions. This approach allows the implementation of statistical region merging techniques in order to increase the performance of the classification process. To achieve an efficient implementation, the dimensionality of the hyperspectral data is reduced by constructing bio-inspired spectral fuzzy sets that minimize the amount of redundant information contained in adjacent hyperspectral bands. The experimental results indicate that the proposed algorithm increased the overall classification rate from 44% using RGB data up to 98% when the spectral-spatial features are used for nonferrous material classification

    Colour image processing and texture analysis on images of porterhouse steak meat

    Get PDF
    This paper outlines two colour image processing and texture analysis techniques applied to meat images and assessment of error due to the use of JPEG compression at image capture. JPEG error analysis was performed by capturing TIFF and JPEG images, then calculating the RMS difference and applying a calibration between block boundary features and subjective visual JPEG scores. Both scores indicated high JPEG quality. Correction of JPEG blocking error was trialled and found to produce minimal improvement in the RMS difference. The texture analysis methods used were singular value decomposition over pixel blocks and complex cell analysis. The block singular values were classified as meat or non- meat by Fisher linear discriminant analysis with the colour image processing result used as ‘truth.’ Using receiver operator characteristic (ROC) analysis, an area under the ROC curve of 0.996 was obtained, demonstrating good correspondence between the colour image processing and the singular values. The complex cell analysis indicated a ‘texture angle’ expected from human inspection

    Real-time hyperspectral processing for automatic nonferrous material sorting

    Get PDF
    The application of hyperspectral sensors in the development of machine vision solutions has become increasingly popular as the spectral characteristics of the imaged materials are better modeled in the hyperspectral domain than in the standard trichromatic red, green, blue data. While there is no doubt that the availability of detailed spectral information is opportune as it opens the possibility to construct robust image descriptors, it also raises a substantial challenge when this high-dimensional data is used in the development of real-time machine vision systems. To alleviate the computational demand, often decorrelation techniques are commonly applied prior to feature extraction. While this approach has reduced to some extent the size of the spectral descriptor, data decorrelation alone proved insufficient in attaining real-time classification. This fact is particularly apparent when pixel-wise image descriptors are not sufficiently robust to model the spectral characteristics of the imaged materials, a case when the spatial information (or textural properties) also has to be included in the classification process. The integration of spectral and spatial information entails a substantial computational cost, and as a result the prospects of real-time operation for the developed machine vision system are compromised. To answer this requirement, in this paper we have reengineered the approach behind the integration of the spectral and spatial information in the material classification process to allow the real-time sorting of the nonferrous fractions that are contained in the waste of electric and electronic equipment scrap. © 2012 SPIE and IS&
    corecore