470 research outputs found

    Detection algorithms for spatial data

    Get PDF
    This dissertation addresses the problem of anomaly detection in spatial data. The problem of landmine detection in airborne spatial data is chosen as the specific detection scenario. The first part of the dissertation deals with the development of a fast algorithm for kernel-based non-linear anomaly detection in the airborne spatial data. The original Kernel RX algorithm, proposed by Kwon et al. [2005a], suffers from the problem of high computational complexity, and has seen limited application. With the aim to reduce the computational complexity, a reformulated version of the Kernel RX, termed the Spatially Weighted Kernel RX (SW-KRX), is presented. It is shown that under this reformulation, the detector statistics can be obtained directly as a function of the centered kernel Gram matrix. Subsequently, a methodology for the fast computation of the centered kernel Gram matrix is proposed. The key idea behind the proposed methodology is to decompose the set of image pixels into clusters, and expediting the computations by approximating the effect of each cluster as a whole. The SW-KRX algorithm is implemented for a special case, and comparative results are compiled for the SW-KRX vis-à-vis the RX anomaly detector. In the second part of the dissertation, a detection methodology for buried mine detection is presented. The methodology is based on extraction of color texture information using cross-co-occurrence features. A feature selection methodology based on Bhattacharya coefficients and principal feature analysis is proposed and detection results with different feature-based detectors are presented, to demonstrate the effectiveness of the proposed methodology in the extraction of useful discriminatory information --Abstract, page iii

    Active microwave remote sensing of earth/land, chapter 2

    Get PDF
    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained

    Earth resources: A continuing bibliography with indexes, issue 22, July 1979

    Get PDF
    This bibliography lists 390 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 April 1979 and 30 June 1979. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Airborne thermography and ground geophysical investigation for detecting shallow ground disturbance under vegetation

    Get PDF
    This thesis discusses the potential of airborne thermal prospection for detecting shallow ground disturbance beneath vegetation based on images acquired by the NERC Airborne Thematic Mapper (ATM) at thermal infrared wavelengths. Shallow ground disturbance creates a differential heat flux due to a variation in the thermal properties between disturbed and undisturbed soils. When observed above a canopy, the effect of vegetation growth on the thermal regime of the underlying soils is poorly understood. The research extends current understanding by examining areas where ground disturbance is known to exist under variable vegetation cover at an archaeological site at Bosworth, Leicestershire and areas of abandoned mine activity on Baildon Moor, W. Yorkshire and in the N. Pennine Orefield, Weardale. The investigation focuses on qualitative image interpretation techniques, where anomalies on day and night thermal images are compared with those manifest on the multispectral images, and a more quantitative approach of Apparent Thermal Inertia (ATI) modelling. Physical thermal inertia is a parameter that is sensitive to volumetric variations in the soil, but cannot be measured directly using remote sensing techniques. However, an apparent thermal inertia is determined by examining the day and night temperature contrast of the surface, where spatial variations can signify potential features buried in the near-surface environment. Ground temperature profiling at the Bosworth site indicates that diurnal heat dissipates between 0.20-0.50m at an early stage in vegetation development with progressively lower diurnal amplitudes observed at 0.20m as the vegetation develops. Results also show that the time of diurnal maximum temperature occurs progressively later as vegetation develops, implying an importance for thermal image acquisition. The quantitative investigation concentrates on the Bosworth site where extensive ground geophysical prospection was performed and vertical soil samples extracted across features of variable multispectral, thermal and ATI response to enable comparison of the observed airborne thermal response with physical soil properties. Results suggest that there is a high correlation between ATI and soil moisture properties at 0.15-0.25m depth (R(^2)=0.99) at an early stage in cereal crop development but has a high correlation at a wider depth range (0.10-0.30m) at a later stage in development (R(^2)=0.98). The high correlation between physical ground disturbance and the thermal response is also corroborated qualitatively with the results of the resistivity surveys. The ATI modelling reveals similar features to those evident on day or night thermal images at an early stage in vegetation growth, suggesting that thermal imaging during the day at an early stage in vegetation growth may supply sufficient information on features buried in the near-surface environment. Airborne thermal imaging therefore provides a useful complementary prospection tool for archaeological and geological applications for surfaces covered by vegetation

    Hyperspectral Imaging for Landmine Detection

    Get PDF
    This PhD thesis aims at investigating the possibility to detect landmines using hyperspectral imaging. Using this technology, we are able to acquire at each pixel of the image spectral data in hundreds of wavelengths. So, at each pixel we obtain a reflectance spectrum that is used as fingerprint to identify the materials in each pixel, and mainly in our project help us to detect the presence of landmines. The proposed process works as follows: a preconfigured drone (hexarotor or octorotor) will carry the hyperspectral camera. This programmed drone is responsible of flying over the contaminated area in order to take images from a safe distance. Various image processing techniques will be used to treat the image in order to isolate the landmine from the surrounding. Once the presence of a mine or explosives is suspected, an alarm signal is sent to the base station giving information about the type of the mine, its location and the clear path that could be taken by the mine removal team in order to disarm the mine. This technology has advantages over the actually used techniques: ‱ It is safer because it limits the need of humans in the searching process and gives the opportunity to the demining team to detect the mines while they are in a safe region. ‱ It is faster. A larger area could be cleared in a single day by comparison with demining techniques ‱ This technique can be used to detect at the same time objects other than mines such oil or minerals. First, a presentation of the problem of landmines that is expanding worldwide referring to some statistics from the UN organizations is provided. In addition, a brief presentation of different types of landmines is shown. Unfortunately, new landmines are well camouflaged and are mainly made of plastic in order to make their detection using metal detectors harder. A summary of all landmine detection techniques is shown to give an idea about the advantages and disadvantages of each technique. In this work, we give an overview of different projects that worked on the detection of landmines using hyperspectral imaging. We will show the main results achieved in this field and future work to be done in order to make this technology effective. Moreover, we worked on different target detection algorithms in order to achieve high probability of detection with low false alarm rate. We tested different statistical and linear unmixing based methods. In addition, we introduced the use of radial basis function neural networks in order to detect landmines at subpixel level. A comparative study between different detection methods will be shown in the thesis. A study of the effect of dimensionality reduction using principal component analysis prior to classification is also provided. The study shows the dependency between the two steps (feature extraction and target detection). The selection of target detection algorithm will define if feature extraction in previous phase is necessary. A field experiment has been done in order to study how the spectral signature of landmine will change depending on the environment in which the mine is planted. For this, we acquired the spectral signature of 6 types of landmines in different conditions: in Lab where specific source of light is used; in field where mines are covered by grass; and when mines are buried in soil. The results of this experiment are very interesting. The signature of two types of landmines are used in the simulations. They are a database necessary for supervised detection of landmines. Also we extracted some spectral characteristics of landmines that would help us to distinguish mines from background

    Synthetic landmine scene development and validation in DIRSIG

    Get PDF
    Detection and neutralization of surface-laid and buried landmines has been a slow and dangerous endeavor for military forces and humanitarian organizations throughout the world. In an effort to make the process faster and safer, scientists have begun to exploit the ever-evolving passive electro-optical realm of detectors, both from a broadband perspective and a multi or hyperspectral perspective. Carried with this exploitation is the development of mine detection algorithms that take advantage of spectral features exhibited by mine targets, only available in a multi or hyperspectral data set. Difficulty in algorithm development arises from a lack of robust data, which is needed to appropriately test the validity of an algorithm\u27s results. This paper discusses the development of synthetic data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. A synthetic landmine scene has been modeled representing data collected at an arid US Army test site by the University of Hawaii\u27s Airborne Hyperspectral Imager (AHI). The synthetic data has been created and validated to represent the surrogate minefield thermally, spatially, spectrally, and temporally over the 7.9 to 11.5 micron region using 70 bands of data. Validation of the scene has been accomplished by direct comparison to the AHI truth data using qualitative band to band visual analysis, radiance curve comparison, Rank Order Correlation comparison, Principle Components dimensionality analysis, Gray Level Co-occurrence Matrix and Spectral Co-occurrence Matrix analysis, and an evaluation of the R(x) algorithm\u27s performance. This paper discusses landmine detection phenomenology, describes the steps taken to build the scene, modeling methods utilized to overcome input parameter limitations, and compares the synthetic scene to truth data

    Remote Sensing for Non‐Technical Survey

    Get PDF
    This chapter describes the research activities of the Royal Military Academy on remote sensing applied to mine action. Remote sensing can be used to detect specific features that could lead to the suspicion of the presence, or absence, of mines. Work on the automatic detection of trenches and craters is presented here. Land cover can be extracted and is quite useful to help mine action. We present here a classification method based on Gabor filters. The relief of a region helps analysts to understand where mines could have been laid. Methods to be a digital terrain model from a digital surface model are explained. The special case of multi‐spectral classification is also addressed in this chapter. Discussion about data fusion is also given. Hyper‐spectral data are also addressed with a change detection method. Synthetic aperture radar data and its fusion with optical data have been studied. Radar interferometry and polarimetry are also addressed

    Drone-based Integration of Hyperspectral Imaging and Magnetics for Mineral Exploration

    Get PDF
    The advent of unoccupied aerial systems (UAS) as disruptive technology has a lasting impact on remote sensing, geophysics and most geosciences. Small, lightweight, and low-cost UAS enable researchers and surveyors to acquire earth observation data in higher spatial and spectral resolution as compared to airborne and satellite data. UAS-based applications range from rapid topographic mapping using photogrammetric techniques to hyperspectral and geophysical measurements of surface and subsurface geology. UAS surveys contribute to identifying metal deposits, monitoring of mine sites and can reveal arising environmental issues associated with mining. Further, affordable UAS technology will boost exploration data availability and expertise in the global south. This thesis investigates the application of UAS-based multi-sensor data for mineral exploration, in particular the integration of hyperspectral imagers, magnetometers and digital cameras (covering the visible red, green, blue light spectrum). UAS-based research is maturing, however the aforementioned methods are not unified effectively. RGB-based photogrammetry is used to investigate topography and surface texture. Image spectrometers measure mineral-specific surface signatures. Magnetometers detect geomagnetic field changes caused by magnetic minerals at surface and depth. The integration of such UAS sensor-based methods in this thesis augments exploration potential with non-invasive, high-resolution, safe, rapid and practical survey methods. UAS-based surveying acquired, processed and integrated data from three distinct test sites. The sites are located in Finland (Fe-Ti-V at OtanmĂ€ki; apatite at SiilinjĂ€rvi) and Greenland (Ni-Cu-PGE at Qullissat, Disko Island) and were chosen as geologically diverse areas in subarctic to arctic environments. Restricted accessibility, unfavourable atmospheric conditions, dark rocks, debris and vegetation cover and low solar illumination were common features. While the topography in Finland was moderately flat, a steep landscape challenged the Greenland field work. These restraints meant that acquisitions varied from site to site and how data was integrated and interpreted is dependent on the commodity of interest. Iron-based spectral absorption and magnetic mineral response were detected using hyperspectral and magnetic surveying in OtanmĂ€ki. Multi-sensor-based image feature detection and classification combined with magnetic forward modelling enabled seamless geologic mapping in SiilinjĂ€rvi. Detailed magnetic inversion and multispectral photogrammetry led to the construction of a comprehensive 3D model of magmatic exploration targets in Greenland. Ground truth at different intensity was employed to verify UAS-based data interpretations during all case studies. Laboratory analysis was applied when deemed necessary to acquire geologic-mineralogic validation (e.g., X-ray diffraction and optical microscopy for mineral identification to establish lithologic domains, magnetic susceptibility measurements for subsurface modelling), for example for trace amounts of magnetite in carbonatite (SiilinjĂ€rvi) and native iron occurrence in basalt (Qullissat). Technical achievements were the integration of a multicopter-based prototype fluxgate-magnetometer data from different survey altitudes with ground truth, and a feasibility study with a high-speed multispectral image system for fixed-wing UAS. The employed case studies transfer the experiences made towards general recommendations for UAS application-based multi-sensor integration. This thesis highlights the feasibility of UAS-based surveying at target scale (1–50 km2) and solidifies versatile survey approaches for multi-sensor integration.Ziel dieser Arbeit war es, das Potenzial einer Drohnen-basierten Mineralexploration mit Multisensor-Datenintegration unter Verwendung optisch-spektroskopischer und magnetischer Methoden zu untersuchen, um u. a. ĂŒbertragbare ArbeitsablĂ€ufe zu erstellen. Die untersuchte Literatur legt nahe, dass Drohnen-basierte Bildspektroskopie und magnetische Sensoren ein ausgereiftes technologisches Niveau erreichen und erhebliches Potenzial fĂŒr die Anwendungsentwicklung bieten, aber es noch keine ausreichende Synergie von hyperspektralen und magnetischen Methoden gibt. Diese Arbeit umfasste drei Fallstudien, bei denen die DrohnengestĂŒtzte Vermessung von geologischen Zielen in subarktischen bis arktischen Regionen angewendet wurde. Eine Kombination von Drohnen-Technologie mit RGB, Multi- und Hyperspektralkameras und Magnetometern ist vorteilhaft und schuf die Grundlage fĂŒr eine integrierte Modellierung in den Fallstudien. Die Untersuchungen wurden in einem GelĂ€nde mit flacher und zerklĂŒfteter Topografie, verdeckten Zielen und unter oft schlechten LichtverhĂ€ltnissen durchgefĂŒhrt. Unter diesen Bedingungen war es das Ziel, die Anwendbarkeit von Drohnen-basierten Multisensordaten in verschiedenen Explorationsumgebungen zu bewerten. Hochauflösende OberflĂ€chenbilder und Untergrundinformationen aus der Magnetik wurden fusioniert und gemeinsam interpretiert, dabei war eine selektive Gesteinsprobennahme und Analyse ein wesentlicher Bestandteil dieser Arbeit und fĂŒr die Validierung notwendig. FĂŒr eine EisenerzlagerstĂ€tte wurde eine einfache RessourcenschĂ€tzung durchgefĂŒhrt, indem Magnetik, bildspektroskopisch-basierte Indizes und 2D-Strukturinterpretation integriert wurden. Fotogrammetrische 3D-Modellierung, magnetisches forward-modelling und hyperspektrale Klassifizierungen wurden fĂŒr eine Karbonatit-Intrusion angewendet, um einen kompletten Explorationsabschnitt zu erfassen. Eine Vektorinversion von magnetischen Daten von Disko Island, Grönland, wurden genutzt, um großrĂ€umige 3D-Modelle von undifferenzierten Erdrutschblöcken zu erstellen, sowie diese zu identifizieren und zu vermessen. Die integrierte spektrale und magnetische Kartierung in komplexen Gebieten verbesserte die Erkennungsrate und rĂ€umliche Auflösung von Erkundungszielen und reduzierte Zeit, Aufwand und benötigtes Probenmaterial fĂŒr eine komplexe Interpretation. Der Prototyp einer Multispektralkamera, gebaut fĂŒr eine StarrflĂŒgler-Drohne fĂŒr die schnelle Vermessung, wurde entwickelt, erfolgreich getestet und zum Teil ausgewertet. Die vorgelegte Arbeit zeigt die Vorteile und Potenziale von Multisensor-Drohnen als praktisches, leichtes, sicheres, schnelles und komfortabel einsetzbares geowissenschaftliches Werkzeug, um digitale Modelle fĂŒr prĂ€zise Rohstofferkundung und geologische Kartierung zu erstellen

    Quarterly literature review of the remote sensing of natural resources

    Get PDF
    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports
    • 

    corecore