188 research outputs found

    Signature of survival: a <sup>18</sup>F-FDG PET based whole-liver radiomic analysis predicts survival after <sup>90</sup>Y-TARE for hepatocellular carcinoma.

    Get PDF
    To generate a predictive whole-liver radiomics scoring system for progression-free survival (PFS) and overall survival (OS) in patients undergoing transarterial radioembolization using Yttrium-90 ( &lt;sup&gt;90&lt;/sup&gt; Y-TARE) for unresectable hepatocellular carcinoma (uHCC). The generated pPET-RadScores were significantly correlated with survival for PFS (median of 11.4 mo [95% confidence interval CI: 6.3-16.5 mo] in low-risk group [PFS-pPET-RadScore &lt; 0.09] vs. 4.0 mo [95% CI: 2.3-5.7 mo] in high-risk group [PFS-pPET-RadScore &gt; 0.09]; &lt;i&gt;P&lt;/i&gt; = 0.0004) and OS (median of 20.3 mo [95% CI: 5.7-35 mo] in low-risk group [OS-pPET-RadScore &lt; 0.11] vs. 7.7 mo [95% CI: 6.0-9.5 mo] in high-risk group [OS-pPET-RadScore &gt; 0.11]; &lt;i&gt;P&lt;/i&gt; = 0.007). The multivariate analysis confirmed PFS-pPET-RadScore ( &lt;i&gt;P&lt;/i&gt; = 0.006) and OS-pPET-RadScore ( &lt;i&gt;P&lt;/i&gt; = 0.001) as independent negative predictors. Pretreatment &lt;sup&gt;18&lt;/sup&gt; F-FDG PET whole-liver radiomics signature appears as an independent negative predictor for PFS and OS in patients undergoing &lt;sup&gt;90&lt;/sup&gt; Y-TARE for uHCC. Pretreatment &lt;sup&gt;18&lt;/sup&gt; F-FDG PET of 47 consecutive patients undergoing &lt;sup&gt;90&lt;/sup&gt; Y-TARE for uHCC (31 resin spheres, 16 glass spheres) were retrospectively analyzed. For each patient, based on PET radiomics signature from whole-liver semi-automatic segmentation, PFS and OS predictive PET-radiomics scores (pPET-RadScores) were obtained using LASSO Cox regression. Using X-tile software, the optimal score to predict PFS (PFS-pPET-RadScore) and OS (OS-pPET-RadScore) served as cutoff to separate high and low-risk patients. Survival curves were estimated using the Kaplan-Meier method. The prognostic value of PFS and OS-pPET-RadScore, Barcelona-Clinic Liver Cancer staging system and serum alpha-fetoprotein level was analyzed to predict PFS and OS in multivariate analysis

    Novel image markers for non-small cell lung cancer classification and survival prediction

    Get PDF
    BACKGROUND: Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is one of serious diseases causing death for both men and women. Computer-aided diagnosis and survival prediction of NSCLC, is of great importance in providing assistance to diagnosis and personalize therapy planning for lung cancer patients. RESULTS: In this paper we have proposed an integrated framework for NSCLC computer-aided diagnosis and survival analysis using novel image markers. The entire biomedical imaging informatics framework consists of cell detection, segmentation, classification, discovery of image markers, and survival analysis. A robust seed detection-guided cell segmentation algorithm is proposed to accurately segment each individual cell in digital images. Based on cell segmentation results, a set of extensive cellular morphological features are extracted using efficient feature descriptors. Next, eight different classification techniques that can handle high-dimensional data have been evaluated and then compared for computer-aided diagnosis. The results show that the random forest and adaboost offer the best classification performance for NSCLC. Finally, a Cox proportional hazards model is fitted by component-wise likelihood based boosting. Significant image markers have been discovered using the bootstrap analysis and the survival prediction performance of the model is also evaluated. CONCLUSIONS: The proposed model have been applied to a lung cancer dataset that contains 122 cases with complete clinical information. The classification performance exhibits high correlations between the discovered image markers and the subtypes of NSCLC. The survival analysis demonstrates strong prediction power of the statistical model built from the discovered image markers

    Novel Image Markers for Non-Small Cell Lung Cancer Classification and Survival Prediction

    Get PDF
    BACKGROUND: Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is one of serious diseases causing death for both men and women. Computer-aided diagnosis and survival prediction of NSCLC, is of great importance in providing assistance to diagnosis and personalize therapy planning for lung cancer patients. RESULTS: In this paper we have proposed an integrated framework for NSCLC computer-aided diagnosis and survival analysis using novel image markers. The entire biomedical imaging informatics framework consists of cell detection, segmentation, classification, discovery of image markers, and survival analysis. A robust seed detection-guided cell segmentation algorithm is proposed to accurately segment each individual cell in digital images. Based on cell segmentation results, a set of extensive cellular morphological features are extracted using efficient feature descriptors. Next, eight different classification techniques that can handle high-dimensional data have been evaluated and then compared for computer-aided diagnosis. The results show that the random forest and adaboost offer the best classification performance for NSCLC. Finally, a Cox proportional hazards model is fitted by component-wise likelihood based boosting. Significant image markers have been discovered using the bootstrap analysis and the survival prediction performance of the model is also evaluated. CONCLUSIONS: The proposed model have been applied to a lung cancer dataset that contains 122 cases with complete clinical information. The classification performance exhibits high correlations between the discovered image markers and the subtypes of NSCLC. The survival analysis demonstrates strong prediction power of the statistical model built from the discovered image markers

    Assessment of significance of features acquired from thyroid ultrasonograms in Hashimoto’s disease

    Get PDF
    Introduction: This paper concerns the analysis of the features obtained from thyroid ultrasound images in left and right transverse and longitudinal sections. In the image analysis, the thyroid lobe is treated as a texture for healthy subjects and patients with Hashimoto's disease. The applied methods of analysis and image processing were profiled to obtain 10 features of the image. Then, their significance in the classification was shown.Material: In this study, the examined group consisted of 29 healthy subjects aged 18 to 60 and 65 patients with Hashimoto's disease. For each subject, four ultrasound images were taken. They were all in transverse and longitudinal sections of the right and left lobe of the thyroid, which gave 376 images in total.Method: 10 different features obtained from each ultrasound image were suggested. The analyzed thyroid lobe was marked automatically or manually with a rectangular element.Results: The analysis of 10 features and the creation for each one of them their own decision tree configuration resulted in distinguishing 3 most significant features. The results of the quality of classification show accuracy above 94% for a non-trimmed decision tree

    FPGA-Based Portable Ultrasound Scanning System with Automatic Kidney Detection

    Get PDF
    Bedsides diagnosis using portable ultrasound scanning (PUS) offering comfortable diagnosis with various clinical advantages, in general, ultrasound scanners suffer from a poor signal-to-noise ratio, and physicians who operate the device at point-of-care may not be adequately trained to perform high level diagnosis. Such scenarios can be eradicated by incorporating ambient intelligence in PUS. In this paper, we propose an architecture for a PUS system, whose abilities include automated kidney detection in real time. Automated kidney detection is performed by training the Viola–Jones algorithm with a good set of kidney data consisting of diversified shapes and sizes. It is observed that the kidney detection algorithm delivers very good performance in terms of detection accuracy. The proposed PUS with kidney detection algorithm is implemented on a single Xilinx Kintex-7 FPGA, integrated with a Raspberry Pi ARM processor running at 900 MHz

    Morphological and multi-level geometrical descriptor analysis in CT and MRI volumes for automatic pancreas segmentation

    Get PDF
    Automatic pancreas segmentation in 3D radiological scans is a critical, yet challenging task. As a prerequisite for computer-aided diagnosis (CADx) systems, accurate pancreas segmentation could generate both quantitative and qualitative information towards establishing the severity of a condition, and thus provide additional guidance for therapy planning. Since the pancreas is an organ of high inter-patient anatomical variability, previous segmentation approaches report lower quantitative accuracy scores in comparison to abdominal organs such as the liver or kidneys. This paper presents a novel approach for automatic pancreas segmentation in magnetic resonance imaging (MRI) and computer tomography (CT) scans. This method exploits 3D segmentation that, when coupled with geometrical and morphological characteristics of abdominal tissue, classifies distinct contours in tight pixel-range proximity as “pancreas” or “non-pancreas”. There are three main stages to this approach: (1) identify a major pancreas region and apply contrast enhancement to differentiate between pancreatic and surrounding tissue; (2) perform 3D segmentation via continuous max-flow and min-cuts approach, structured forest edge detection, and a training dataset of annotated pancreata; (3) eliminate non-pancreatic contours from resultant segmentation via morphological operations on area, structure and connectivity between distinct contours. The proposed method is evaluated on a dataset containing 82 CT image volumes, achieving mean Dice Similarity coefficient (DSC) of 79.3 ± 4.4%. Two MRI datasets containing 216 and 132 image volumes are evaluated, achieving mean DSC 79.6 ± 5.7% and 81.6 ± 5.1% respectively. This approach is statistically stable, reflected by lower metrics in standard deviation in comparison to state-of-the-art approaches
    corecore