1,372 research outputs found

    Application of Fractal and Wavelets in Microcalcification Detection

    Get PDF
    Breast cancer has been recognized as one or the most frequent, malignant tumors in women, clustered microcalcifications in mammogram images has been widely recognized as an early sign of breast cancer. This work is devote to review the application of Fractal and Wavelets in microcalcifications detection

    A fractal dimension based optimal wavelet packet analysis technique for classification of meningioma brain tumours

    Get PDF
    With the heterogeneous nature of tissue texture, using a single resolution approach for optimum classification might not suffice. In contrast, a multiresolution wavelet packet analysis can decompose the input signal into a set of frequency subbands giving the opportunity to characterise the texture at the appropriate frequency channel. An adaptive best bases algorithm for optimal bases selection for meningioma histopathological images is proposed, via applying the fractal dimension (FD) as the bases selection criterion in a tree-structured manner. Thereby, the most significant subband that better identifies texture discontinuities will only be chosen for further decomposition, and its fractal signature would represent the extracted feature vector for classification. The best basis selection using the FD outperformed the energy based selection approaches, achieving an overall classification accuracy of 91.25% as compared to 83.44% and 73.75% for the co-occurrence matrix and energy texture signatures; respectively

    A textural deep neural network architecture for mechanical failure analysis

    Get PDF
    Nowadays, many classification problems are approached with deep learning architectures, and the results are outstanding compared to the ones obtained with traditional computer vision approaches. However, when it comes to texture, deep learning analysis has not had the same success as for other tasks. The texture is an inherent characteristic of objects, and it is the main descriptor for many applications in the computer vision field, however due to its stochastic appearance, it is difficult to obtain a mathematical model for it. According to the state of the art, deep learning techniques have some limitations when it comes to learning textural features; and, to classify texture using deep neural networks, it is essential to integrate them with handcrafted features or develop an architecture that resembles these features. By solving this problem, it would be possible to contribute in different applications, such as fractographic analysis. To achieve the best performance in any industry, it is important that the companies have a failure analysis, able to show the flaws’ causes, offer applications and solutions and generate alternatives that allow the customers to obtain more efficient components and productions. The failure of an industrial element has consequences such as significant economic losses, and in some cases, even human losses. With this analysis it is possible to examine the background of the damaged piece in order to find how and why it fails, and to help prevent future failures, in order to implement safer conditions. The visual inspection is the basis for the generation of every fractographic process in failure analysis and it is the main tool for fracture classification. This process is usually done by non-expert personnel on the topic, and normally they do not have the knowledge or experience required for the job, which, without question, increases the possibilities of generating a wrong classification and negatives results in the whole process. This research focuses on the development of a visual computer system that implements a textural deep learning architecture. Several approaches were taken into account, including combining deep learning techniques with traditional handcrafted features, and the development of a new architecture based on the wavelet transform and the multiresolution analysis. The algorithm was test on textural benchmark datasets and on the classification of mechanical fractures with particular texture and marks on surfaces of crystalline materials.Actualmente, diferentes problemas computacionales utilizan arquitecturas de aprendizaje profundo como enfoque principal. Obteniendo resultados sobresalientes comparados con los obtenidos por métodos tradicionales de visión por computador. Sin embargo, cuando se trata de texturas, los análisis de textura no han tenido el mismo éxito que para otras tareas. La textura es una característica inherente de los objetos y es el descriptor principal para diferentes aplicaciones en el campo de la visión por computador. Debido a su apariencia estocástica difícilmente se puede obtener un modelo matemático para describirla. De acuerdo con el estado-del-arte, las técnicas de aprendizaje profundo presentan limitaciones cuando se trata de aprender características de textura. Para clasificarlas, se hace esencial combinarlas con características tradicionales o desarrollar arquitecturas de aprendizaje profundo que reseemblen estas características. Al solucionar este problema es posible contribuir a diferentes aplicaciones como el análisis fractográfico. Para obtener el mejor desempeño en cualquier tipo de industria es importante obtener análisis fractográfico, el cual permite determinar las causas de los diferentes fallos y generar las alternativas para obtener componentes más eficientes. La falla de un elemento mecánico tiene consecuencias importantes tal como pérdidas económicas y en algunos casos incluso pérdidas humanas. Con estos análisis es posible examinar la historia de las piezas dañadas con el fin de entender porqué y cómo se dio el fallo en primer lugar y la forma de prevenirla. De esta forma implementar condiciones más seguras. La inspección visual es la base para la generación de todo proceso fractográfico en el análisis de falla y constituye la herramienta principal para la clasificación de fracturas. El proceso, usualmente, es realizado por personal no-experto en el tema, que normalmente, no cuenta con el conocimiento o experiencia necesarios requeridos para el trabajo, lo que sin duda incrementa las posibilidades de generar una clasificación errónea y, por lo tanto, obtener resultados negativos en todo el proceso. Esta investigación se centra en el desarrollo de un sistema visual de visión por computado que implementa una arquitectura de aprendizaje profundo enfocada en el análisis de textura. Diferentes enfoques fueron tomados en cuenta, incluyendo la combinación de técnicas de aprendizaje profundo con características tradicionales y el desarrollo de una nueva arquitectura basada en la transformada wavelet y el análisis multiresolución. El algorítmo fue probado en bases de datos de referencia en textura y en la clasificación de fracturas mecánicas en materiales cristalinos, las cuales presentan texturas y marcas características dependiendo del tipo de fallo generado sobre la pieza.Fundación CEIBADoctorad

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    A Self-Organizing Neural System for Learning to Recognize Textured Scenes

    Full text link
    A self-organizing ARTEX model is developed to categorize and classify textured image regions. ARTEX specializes the FACADE model of how the visual cortex sees, and the ART model of how temporal and prefrontal cortices interact with the hippocampal system to learn visual recognition categories and their names. FACADE processing generates a vector of boundary and surface properties, notably texture and brightness properties, by utilizing multi-scale filtering, competition, and diffusive filling-in. Its context-sensitive local measures of textured scenes can be used to recognize scenic properties that gradually change across space, as well a.s abrupt texture boundaries. ART incrementally learns recognition categories that classify FACADE output vectors, class names of these categories, and their probabilities. Top-down expectations within ART encode learned prototypes that pay attention to expected visual features. When novel visual information creates a poor match with the best existing category prototype, a memory search selects a new category with which classify the novel data. ARTEX is compared with psychophysical data, and is benchmarked on classification of natural textures and synthetic aperture radar images. It outperforms state-of-the-art systems that use rule-based, backpropagation, and K-nearest neighbor classifiers.Defense Advanced Research Projects Agency; Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Oriented Response Networks

    Full text link
    Deep Convolution Neural Networks (DCNNs) are capable of learning unprecedentedly effective image representations. However, their ability in handling significant local and global image rotations remains limited. In this paper, we propose Active Rotating Filters (ARFs) that actively rotate during convolution and produce feature maps with location and orientation explicitly encoded. An ARF acts as a virtual filter bank containing the filter itself and its multiple unmaterialised rotated versions. During back-propagation, an ARF is collectively updated using errors from all its rotated versions. DCNNs using ARFs, referred to as Oriented Response Networks (ORNs), can produce within-class rotation-invariant deep features while maintaining inter-class discrimination for classification tasks. The oriented response produced by ORNs can also be used for image and object orientation estimation tasks. Over multiple state-of-the-art DCNN architectures, such as VGG, ResNet, and STN, we consistently observe that replacing regular filters with the proposed ARFs leads to significant reduction in the number of network parameters and improvement in classification performance. We report the best results on several commonly used benchmarks.Comment: Accepted in CVPR 2017. Source code available at http://yzhou.work/OR
    corecore