7,356 research outputs found

    Speaker verification using sequence discriminant support vector machines

    Get PDF
    This paper presents a text-independent speaker verification system using support vector machines (SVMs) with score-space kernels. Score-space kernels generalize Fisher kernels and are based on underlying generative models such as Gaussian mixture models (GMMs). This approach provides direct discrimination between whole sequences, in contrast with the frame-level approaches at the heart of most current systems. The resultant SVMs have a very high dimensionality since it is related to the number of parameters in the underlying generative model. To address problems that arise in the resultant optimization we introduce a technique called spherical normalization that preconditions the Hessian matrix. We have performed speaker verification experiments using the PolyVar database. The SVM system presented here reduces the relative error rates by 34% compared to a GMM likelihood ratio system

    SVMSVM: Support vector machine speaker verification methodology.

    Get PDF
    Support vector machines with the Fisher and score-space kernels are used for text independent speaker verification to provide direct q discrimination between complete utterances. This is unlike approaches such as discriminatively trained Gaussian mixture models or other discriminative classifiers that discriminate at the frame-level only. Using the sequence-level discrimination approach we are able to achieve error-rates that are significantly better than the current state-of-the-art on the PolyVar database

    Human and Machine Speaker Recognition Based on Short Trivial Events

    Full text link
    Trivial events are ubiquitous in human to human conversations, e.g., cough, laugh and sniff. Compared to regular speech, these trivial events are usually short and unclear, thus generally regarded as not speaker discriminative and so are largely ignored by present speaker recognition research. However, these trivial events are highly valuable in some particular circumstances such as forensic examination, as they are less subjected to intentional change, so can be used to discover the genuine speaker from disguised speech. In this paper, we collect a trivial event speech database that involves 75 speakers and 6 types of events, and report preliminary speaker recognition results on this database, by both human listeners and machines. Particularly, the deep feature learning technique recently proposed by our group is utilized to analyze and recognize the trivial events, which leads to acceptable equal error rates (EERs) despite the extremely short durations (0.2-0.5 seconds) of these events. Comparing different types of events, 'hmm' seems more speaker discriminative.Comment: ICASSP 201

    NPLDA: A Deep Neural PLDA Model for Speaker Verification

    Full text link
    The state-of-art approach for speaker verification consists of a neural network based embedding extractor along with a backend generative model such as the Probabilistic Linear Discriminant Analysis (PLDA). In this work, we propose a neural network approach for backend modeling in speaker recognition. The likelihood ratio score of the generative PLDA model is posed as a discriminative similarity function and the learnable parameters of the score function are optimized using a verification cost. The proposed model, termed as neural PLDA (NPLDA), is initialized using the generative PLDA model parameters. The loss function for the NPLDA model is an approximation of the minimum detection cost function (DCF). The speaker recognition experiments using the NPLDA model are performed on the speaker verificiation task in the VOiCES datasets as well as the SITW challenge dataset. In these experiments, the NPLDA model optimized using the proposed loss function improves significantly over the state-of-art PLDA based speaker verification system.Comment: Published in Odyssey 2020, the Speaker and Language Recognition Workshop (VOiCES Special Session). Link to GitHub Implementation: https://github.com/iiscleap/NeuralPlda. arXiv admin note: substantial text overlap with arXiv:2001.0703

    Semi-supervised transductive speaker identification

    Get PDF
    We present an application of transductive semi-supervised learning to the problem of speaker identification. Formulating this problem as one of transduction is the most natural choice in some scenarios, such as when annotating archived speech data. Experiments with the CHAINS corpus show that, using the basic MFCC-encoding of recorded utterances, a well known simple semi-supervised algorithm, label spread, can solve this problem well. With only a small number of labelled utterances, the semi-supervised algorithm drastically outperforms a state of the art supervised support vector machine algorithm. Although we restrict ourselves to the transductive setting in this paper, the results encourage future work on semi-supervised learning for inductive speaker identification

    Human abnormal behavior impact on speaker verification systems

    Get PDF
    Human behavior plays a major role in improving human-machine communication. The performance must be affected by abnormal behavior as systems are trained using normal utterances. The abnormal behavior is often associated with a change in the human emotional state. Different emotional states cause physiological changes in the human body that affect the vocal tract. Fear, anger, or even happiness we recognize as a deviation from a normal behavior. The whole spectrum of human-machine application is susceptible to behavioral changes. Abnormal behavior is a major factor, especially for security applications such as verification systems. Face, fingerprint, iris, or speaker verification is a group of the most common approaches to biometric authentication today. This paper discusses human normal and abnormal behavior and its impact on the accuracy and effectiveness of automatic speaker verification (ASV). The support vector machines classifier inputs are Mel-frequency cepstral coefficients and their dynamic changes. For this purpose, the Berlin Database of Emotional Speech was used. Research has shown that abnormal behavior has a major impact on the accuracy of verification, where the equal error rate increase to 37 %. This paper also describes a new design and application of the ASV system that is much more immune to the rejection of a target user with abnormal behavior.Web of Science6401274012
    • ā€¦
    corecore