1,315 research outputs found

    Automated Testing of Speech-to-Speech Machine Translation in Telecom Networks

    Get PDF
    Globalisoituvassa maailmassa kyky kommunikoida kielimuurien yli käy yhä tärkeämmäksi. Kielten opiskelu on työlästä ja siksi halutaan kehittää automaattisia konekäännösjärjestelmiä. Ericsson on kehittänyt prototyypin nimeltä Real-Time Interpretation System (RTIS), joka toimii mobiiliverkossa ja kääntää matkailuun liittyviä fraaseja puhemuodossa kahden kielen välillä. Nykyisten konekäännösjärjestelmien suorituskyky on suhteellisen huono ja siksi testauksella on suuri merkitys järjestelmien suunnittelussa. Testauksen tarkoituksena on varmistaa, että järjestelmä säilyttää käännösekvivalenssin sekä puhekäännösjärjestelmän tapauksessa myös riittävän puheenlaadun. Luotettavimmin testaus voidaan suorittaa ihmisten antamiin arviointeihin perustuen, mutta tällaisen testauksen kustannukset ovat suuria ja tulokset subjektiivisia. Tässä työssä suunniteltiin ja analysoitiin automatisoitu testiympäristö Real-Time Interpretation System -käännösprototyypille. Tavoitteina oli tutkia, voidaanko testaus suorittaa automatisoidusti ja pystytäänkö todellinen, käyttäjän havaitsema käännösten laatu mittaamaan automatisoidun testauksen keinoin. Tulokset osoittavat että mobiiliverkoissa puheenlaadun testaukseen käytetyt menetelmät eivät ole optimaalisesti sovellettavissa konekäännösten testaukseen. Nykytuntemuksen mukaan ihmisten suorittama arviointi on ainoa luotettava tapa mitata käännösekvivalenssia ja puheen ymmärrettävyyttä. Konekäännösten testauksen automatisointi vaatii lisää tutkimusta, jota ennen subjektiivinen arviointi tulisi säilyttää ensisijaisena testausmenetelmänä RTIS-testauksessa.In the globalizing world, the ability to communicate over language barriers is increasingly important. Learning languages is laborious, which is why there is a strong desire to develop automatic machine translation applications. Ericsson has developed a speech-to-speech translation prototype called the Real-Time Interpretation System (RTIS). The service runs in a mobile network and translates travel phrases between two languages in speech format. The state-of-the-art machine translation systems suffer from a relatively poor performance and therefore evaluation plays a big role in machine translation development. The purpose of evaluation is to ensure the system preserves the translational equivalence, and in case of a speech-to-speech system, the speech quality. The evaluation is most reliably done by human judges. However, human-conducted evaluation is costly and subjective. In this thesis, a test environment for Ericsson Real-Time Interpretation System prototype is designed and analyzed. The goals are to investigate if the RTIS verification can be conducted automatically, and if the test environment can truthfully measure the end-to-end performance of the system. The results conclude that methods used in end-to-end speech quality verification in mobile networks can not be optimally adapted for machine translation evaluation. With current knowledge, human-conducted evaluation is the only method that can truthfully measure translational equivalence and the speech intelligibility. Automating machine translation evaluation needs further research, until which human-conducted evaluation should remain the preferred method in RTIS verification

    Study to determine potential flight applications and human factors design guidelines for voice recognition and synthesis systems

    Get PDF
    A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept

    Security Enhancements in Voice Over Ip Networks

    Get PDF
    Voice delivery over IP networks including VoIP (Voice over IP) and VoLTE (Voice over LTE) are emerging as the alternatives to the conventional public telephony networks. With the growing number of subscribers and the global integration of 4/5G by operations, VoIP/VoLTE as the only option for voice delivery becomes an attractive target to be abused and exploited by malicious attackers. This dissertation aims to address some of the security challenges in VoIP/VoLTE. When we examine the past events to identify trends and changes in attacking strategies, we find that spam calls, caller-ID spoofing, and DoS attacks are the most imminent threats to VoIP deployments. Compared to email spam, voice spam will be much more obnoxious and time consuming nuisance for human subscribers to filter out. Since the threat of voice spam could become as serious as email spam, we first focus on spam detection and propose a content-based approach to protect telephone subscribers\u27 voice mailboxes from voice spam. Caller-ID has long been used to enable the callee parties know who is calling, verify his identity for authentication and his physical location for emergency services. VoIP and other packet switched networks such as all-IP Long Term Evolution (LTE) network provide flexibility that helps subscribers to use arbitrary caller-ID. Moreover, interconnecting between IP telephony and other Circuit-Switched (CS) legacy telephone networks has also weakened the security of caller-ID systems. We observe that the determination of true identity of a calling device helps us in preventing many VoIP attacks, such as caller-ID spoofing, spamming and call flooding attacks. This motivates us to take a very different approach to the VoIP problems and attempt to answer a fundamental question: is it possible to know the type of a device a subscriber uses to originate a call? By exploiting the impreciseness of the codec sampling rate in the caller\u27s RTP streams, we propose a fuzzy rule-based system to remotely identify calling devices. Finally, we propose a caller-ID based public key infrastructure for VoIP and VoLTE that provides signature generation at the calling party side as well as signature verification at the callee party side. The proposed signature can be used as caller-ID trust to prevent caller-ID spoofing and unsolicited calls. Our approach is based on the identity-based cryptography, and it also leverages the Domain Name System (DNS) and proxy servers in the VoIP architecture, as well as the Home Subscriber Server (HSS) and Call Session Control Function (CSCF) in the IP Multimedia Subsystem (IMS) architecture. Using OPNET, we then develop a comprehensive simulation testbed for the evaluation of our proposed infrastructure. Our simulation results show that the average call setup delays induced by our infrastructure are hardly noticeable by telephony subscribers and the extra signaling overhead is negligible. Therefore, our proposed infrastructure can be adopted to widely verify caller-ID in telephony networks

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore