52,631 research outputs found

    X-VECTORS: ROBUST NEURAL EMBEDDINGS FOR SPEAKER RECOGNITION

    Get PDF
    Speaker recognition is the task of identifying speakers based on their speech signal. Typically, this involves comparing speech from a known speaker, with recordings from unknown speakers, and making same-or-different speaker decisions. If the lexical contents of the recordings are fixed to some phrase, the task is considered text-dependent, otherwise it is text-independent. This dissertation is primarily concerned with this second, less constrained problem. Since speech data lives in a complex, high-dimensional space, it is difficult to directly compare speakers. Comparisons are facilitated by embeddings: mappings from complex input patterns to low-dimensional Euclidean spaces where notions of distance or similarity are defined in natural ways. For almost ten years, systems based on i-vectors--a type of embedding extracted from a traditional generative model--have been the dominant paradigm in this field. However, in other areas of applied machine learning, such as text or vision, embeddings extracted from discriminatively trained neural networks are the state-of-the-art. Recently, this line of research has become very active in speaker recognition as well. Neural networks are a natural choice for this purpose, as they are capable of learning extremely complex mappings, and when training data resources are abundant, tend to outperform traditional methods. In this dissertation, we develop a next-generation neural embedding--denoted by x-vector--for speaker recognition. These neural embeddings are demonstrated to substantially improve upon the state-of-the-art on a number of benchmark datasets

    Investigation of Frame Alignments for GMM-based Digit-prompted Speaker Verification

    Full text link
    Frame alignments can be computed by different methods in GMM-based speaker verification. By incorporating a phonetic Gaussian mixture model (PGMM), we are able to compare the performance using alignments extracted from the deep neural networks (DNN) and the conventional hidden Markov model (HMM) in digit-prompted speaker verification. Based on the different characteristics of these two alignments, we present a novel content verification method to improve the system security without much computational overhead. Our experiments on the RSR2015 Part-3 digit-prompted task show that, the DNN based alignment performs on par with the HMM alignment. The results also demonstrate the effectiveness of the proposed Kullback-Leibler (KL) divergence based scoring to reject speech with incorrect pass-phrases.Comment: accepted by APSIPA ASC 201

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Factor analysis modelling for speaker verification with short utterances

    Get PDF
    This paper examines combining both relevance MAP and subspace speaker adaptation processes to train GMM speaker models for use in speaker verification systems with a particular focus on short utterance lengths. The subspace speaker adaptation method involves developing a speaker GMM mean supervector as the sum of a speaker-independent prior distribution and a speaker dependent offset constrained to lie within a low-rank subspace, and has been shown to provide improvements in accuracy over ordinary relevance MAP when the amount of training data is limited. It is shown through testing on NIST SRE data that combining the two processes provides speaker models which lead to modest improvements in verification accuracy for limited data situations, in addition to improving the performance of the speaker verification system when a larger amount of available training data is available
    • ā€¦
    corecore