349 research outputs found

    CAPTCHA: Attacks and Weaknesses against OCR technology

    Get PDF
    The basic challenge in designing these obfuscating CAPTCHAs is to make them easy enough that users are not dissuaded from attempting a solution, yet still too difficult to solve using available computer vision algorithms. As Modern technology grows this gap however becomes thinner and thinner. It is possible to enhance the security of an existing text CAPTCHA by system-apically adding noise and distortion, and arranging characters more tightly. These measures, however, would also make the characters harder for humans to recognize, resulting in a higher error rates and higher Network load .This paper presents few of most active attacks on text CAPTCHAs existing today

    CAPTCHaStar! A novel CAPTCHA based on interactive shape discovery

    Full text link
    Over the last years, most websites on which users can register (e.g., email providers and social networks) adopted CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) as a countermeasure against automated attacks. The battle of wits between designers and attackers of CAPTCHAs led to current ones being annoying and hard to solve for users, while still being vulnerable to automated attacks. In this paper, we propose CAPTCHaStar, a new image-based CAPTCHA that relies on user interaction. This novel CAPTCHA leverages the innate human ability to recognize shapes in a confused environment. We assess the effectiveness of our proposal for the two key aspects for CAPTCHAs, i.e., usability, and resiliency to automated attacks. In particular, we evaluated the usability, carrying out a thorough user study, and we tested the resiliency of our proposal against several types of automated attacks: traditional ones; designed ad-hoc for our proposal; and based on machine learning. Compared to the state of the art, our proposal is more user friendly (e.g., only some 35% of the users prefer current solutions, such as text-based CAPTCHAs) and more resilient to automated attacks.Comment: 15 page

    Using Synthetic Data to Train Neural Networks is Model-Based Reasoning

    Full text link
    We draw a formal connection between using synthetic training data to optimize neural network parameters and approximate, Bayesian, model-based reasoning. In particular, training a neural network using synthetic data can be viewed as learning a proposal distribution generator for approximate inference in the synthetic-data generative model. We demonstrate this connection in a recognition task where we develop a novel Captcha-breaking architecture and train it using synthetic data, demonstrating both state-of-the-art performance and a way of computing task-specific posterior uncertainty. Using a neural network trained this way, we also demonstrate successful breaking of real-world Captchas currently used by Facebook and Wikipedia. Reasoning from these empirical results and drawing connections with Bayesian modeling, we discuss the robustness of synthetic data results and suggest important considerations for ensuring good neural network generalization when training with synthetic data.Comment: 8 pages, 4 figure

    A Novel Design of Audio CAPTCHA for Visually Impaired Users

    Get PDF
    CAPTCHAs are widely used by web applications for the purpose of security and privacy. However, traditional text-based CAPTCHAs are not suitable for sighted users much less users with visual impairments. To address the issue, this paper proposes a new mechanism for CAPTCHA called HearAct, which is a real-time audio-based CAPTCHA that enables easy access for users with visual impairments. The user listens to the sound of something (the “sound-maker”), and he/she must identify what the sound-maker is. After that, HearAct identifies a word and requires the user to analyze a word and determine whether it has the stated letter or not. If the word has the letter, the user must tap and if not, they swipe. This paper presents our HearAct pilot study conducted with thirteen blind users. The preliminary user study results suggest the new form of CAPTCHA has a lot of potential for both blind and visual users. The results also show that the HearAct CAPTCHA can be solved in a shorter time than the text-based CAPTCHAs because HearAct allows users to solve the CAPTCHA using gestures instead of typing. Thus, participants preferred HearAct over audio-based CAPTCHAs. The results of the study also show that the success rate of solving the HearAct CAPTCHA is 82.05% and 43.58% for audio CAPTCHA. A significant usability differences between the System Usability score for HearAct CAPTCHA method was 88.07 compared to audio CAPTCHA was 52.11%. Using gestures to solve the CAPTCHA challenge is the most preferable feature in the HearAct solution. To increase the security of HearAct, it is necessary to increase the number of sounds in the CAPTCHA. There is also a need to improve the CAPTCHA solution to cover wide range of users by adding corresponding image with each sound to meet deaf users’ needs; they then need to identify the spelling of the sound maker’s word

    On the security of text-based 3D CAPTCHAs

    Get PDF
    CAPTCHAs have become a standard security mechanism that are used to deter automated abuse of online services intended for humans. However, many existing CAPTCHA schemes to date have been successfully broken. As such, a number of CAPTCHA developers have explored alternative methods of designing CAPTCHAs. 3D CAPTCHAs is a design alternative that has been proposed to overcome the limitations of traditional CAPTCHAs. These CAPTCHAs are designed to capitalize on the human visual system\u27s natural ability to perceive 3D objects from an image. The underlying security assumption is that it is difficult for a computer program to identify the 3D content. This paper investigates the robustness of text-based 3D CAPTCHAs. In particular, we examine three existing text-based 3D CAPTCHA schemes that are currently deployed on a number of websites. While the direct use of Optical Character Recognition (OCR) software is unable to correctly solve these textbased 3D CAPTCHA challenges, we highlight certain patterns in the 3D CAPTCHAs can be exploited to identify important information within the CAPTCHA. By extracting this information, this paper demonstrates that automated attacks can be used to solve these 3D CAPTCHAs with a high degree of success

    TAPCHA: An Invisible CAPTCHA Scheme

    Get PDF
    TAPCHA is a universal CAPTCHA scheme designed for touch-enabled smart devices such as smartphones, tablets and smartwatches. The main difference between TAPCHA and other CAPTCHA schemes is that TAPCHA retains its security by making the CAPTCHA test ‘invisible’ for the bot. It then utilises context effects to maintain the readability of the instruction for human users which eventually guarantees the usability of the scheme. Two reference designs, namely TAPCHA SHAPE & SHADE and TAPCHA MULTI are developed to demonstrate the use of this scheme
    corecore