2,352 research outputs found

    A Novel Text-Mining Approach for Retrieving Pharmacogenomics Associations From the Literature

    Get PDF
    Text mining in biomedical literature is an emerging field which has already been shown to have a variety of implementations in many research areas, including genetics, personalized medicine, and pharmacogenomics. In this study, we describe a novel text-mining approach for the extraction of pharmacogenomics associations. The code that was used toward this end was implemented using R programming language, either through custom scripts, where needed, or through utilizing functions from existing libraries. Articles (abstracts or full texts) that correspond to a specified query were extracted from PubMed, while concept annotations were derived by PubTator Central. Terms that denote a Mutation or a Gene as well as Chemical compound terms corresponding to drug compounds were normalized and the sentences containing the aforementioned terms were filtered and preprocessed to create appropriate training sets. Finally, after training and adequate hyperparameter tuning, four text classifiers were created and evaluated (FastText, Linear kernel SVMs, XGBoost, Lasso, and Elastic-Net Regularized Generalized Linear Models) with regard to their performance in identifying pharmacogenomics associations. Although further improvements are essential toward proper implementation of this text-mining approach in the clinical practice, our study stands as a comprehensive, simplified, and up-to-date approach for the identification and assessment of research articles enriched in clinically relevant pharmacogenomics relationships. Furthermore, this work highlights a series of challenges concerning the effective application of text mining in biomedical literature, whose resolution could substantially contribute to the further development of this field

    Text Mining Adoption for Pharmacogenomics-based Drug Discovery in a Large Pharmaceutical Company: a Case Study

    Get PDF
    Text mining can help pharmacogenomics researchers reduce information overload hindering pharmacogenomics-based drug discovery (PGx-DD) because it can aid in the generation of rich novel information from large collections of diverse scientific literature and research data. The present study aims to understand text mining adoption and innovation for PGx-DD in the pharmaceutical industry. The study re-frames text mining as an approach to automate the generation of novel information, reviews successful exemplary text mining applications, and examines a case study of a leading pharmaceutical company within the novelty generation framework. The case study demonstrates that the Unified Theory of Acceptance and Use of Technology (UTAUT) model (Venkatesh, Morris, Davis, & Davis, 2003) does not account for conceptual barriers to adoption and innovation. By Everett Rogers' Diffusion of innovation theory (1983), the case study subject is more of an early adopter rather than an innovator. In order to fulfill the promise of PGx-DD, drug companies may need to re-conceptualize text mining by focusing on its capacity to generate novel high-quality information and subsequently return to a higher-risk path of innovation

    Systematic identification of pharmacogenomics information from clinical trials

    Get PDF
    AbstractRecent progress in high-throughput genomic technologies has shifted pharmacogenomic research from candidate gene pharmacogenetics to clinical pharmacogenomics (PGx). Many clinical related questions may be asked such as ‘what drug should be prescribed for a patient with mutant alleles?’ Typically, answers to such questions can be found in publications mentioning the relationships of the gene–drug–disease of interest. In this work, we hypothesize that ClinicalTrials.gov is a comparable source rich in PGx related information. In this regard, we developed a systematic approach to automatically identify PGx relationships between genes, drugs and diseases from trial records in ClinicalTrials.gov. In our evaluation, we found that our extracted relationships overlap significantly with the curated factual knowledge through the literature in a PGx database and that most relationships appear on average 5years earlier in clinical trials than in their corresponding publications, suggesting that clinical trials may be valuable for both validating known and capturing new PGx related information in a more timely manner. Furthermore, two human reviewers judged a portion of computer-generated relationships and found an overall accuracy of 74% for our text-mining approach. This work has practical implications in enriching our existing knowledge on PGx gene–drug–disease relationships as well as suggesting crosslinks between ClinicalTrials.gov and other PGx knowledge bases

    Global text mining and development of pharmacogenomic knowledge resource for precision medicine

    Get PDF
    Understanding patients' genomic variations and their effect in protecting or predisposing them to drug response phenotypes is important for providing personalized healthcare. Several studies have manually curated such genotype-phenotype relationships into organized databases from clinical trial data or published literature. However, there are no text mining tools available to extract high-accuracy information from such existing knowledge. In this work, we used a semiautomated text mining approach to retrieve a complete pharmacogenomic (PGx) resource integrating disease-drug-gene-polymorphism relationships to derive a global perspective for ease in therapeutic approaches. We used an R package, pubmed.mineR, to automatically retrieve PGx-related literature. We identified 1,753 disease types, and 666 drugs, associated with 4,132 genes and 33,942 polymorphisms collated from 180,088 publications. With further manual curation, we obtained a total of 2,304 PGx relationships. We evaluated our approach by performance (precision = 0.806) with benchmark datasets like Pharmacogenomic Knowledgebase (PharmGKB) (0.904), Online Mendelian Inheritance in Man (OMIM) (0.600), and The Comparative Toxicogenomics Database (CTD) (0.729). We validated our study by comparing our results with 362 commercially used the US- Food and drug administration (FDA)-approved drug labeling biomarkers. Of the 2,304 PGx relationships identified, 127 belonged to the FDA list of 362 approved pharmacogenomic markers, indicating that our semiautomated text mining approach may reveal significant PGx information with markers for drug response prediction. In addition, it is a scalable and state-of-art approach in curation for PGx clinical utility

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes
    • …
    corecore