24,110 research outputs found

    Scene Text Detection via Holistic, Multi-Channel Prediction

    Full text link
    Recently, scene text detection has become an active research topic in computer vision and document analysis, because of its great importance and significant challenge. However, vast majority of the existing methods detect text within local regions, typically through extracting character, word or line level candidates followed by candidate aggregation and false positive elimination, which potentially exclude the effect of wide-scope and long-range contextual cues in the scene. To take full advantage of the rich information available in the whole natural image, we propose to localize text in a holistic manner, by casting scene text detection as a semantic segmentation problem. The proposed algorithm directly runs on full images and produces global, pixel-wise prediction maps, in which detections are subsequently formed. To better make use of the properties of text, three types of information regarding text region, individual characters and their relationship are estimated, with a single Fully Convolutional Network (FCN) model. With such predictions of text properties, the proposed algorithm can simultaneously handle horizontal, multi-oriented and curved text in real-world natural images. The experiments on standard benchmarks, including ICDAR 2013, ICDAR 2015 and MSRA-TD500, demonstrate that the proposed algorithm substantially outperforms previous state-of-the-art approaches. Moreover, we report the first baseline result on the recently-released, large-scale dataset COCO-Text.Comment: 10 pages, 9 figures, 5 table

    Skeleton Matching based approach for Text Localization in Scene Images

    Full text link
    In this paper, we propose a skeleton matching based approach which aids in text localization in scene images. The input image is preprocessed and segmented into blocks using connected component analysis. We obtain the skeleton of the segmented block using morphology based approach. The skeletonized images are compared with the trained templates in the database to categorize into text and non-text blocks. Further, the newly designed geometrical rules and morphological operations are employed on the detected text blocks for scene text localization. The experimental results obtained on publicly available standard datasets illustrate that the proposed method can detect and localize the texts of various sizes, fonts and colors.Comment: 10 pages, 8 figures, Eighth International Conference on Image and Signal Processing,Elsevier Publications,pp: 145-153, held at UVCE, Bangalore in July 2014. ISBN: 978935107252

    Enhanced Characterness for Text Detection in the Wild

    Full text link
    Text spotting is an interesting research problem as text may appear at any random place and may occur in various forms. Moreover, ability to detect text opens the horizons for improving many advanced computer vision problems. In this paper, we propose a novel language agnostic text detection method utilizing edge enhanced Maximally Stable Extremal Regions in natural scenes by defining strong characterness measures. We show that a simple combination of characterness cues help in rejecting the non text regions. These regions are further fine-tuned for rejecting the non-textual neighbor regions. Comprehensive evaluation of the proposed scheme shows that it provides comparative to better generalization performance to the traditional methods for this task

    Joint Energy-based Detection and Classificationon of Multilingual Text Lines

    Full text link
    This paper proposes a new hierarchical MDL-based model for a joint detection and classification of multilingual text lines in im- ages taken by hand-held cameras. The majority of related text detec- tion methods assume alphabet-based writing in a single language, e.g. in Latin. They use simple clustering heuristics specific to such texts: prox- imity between letters within one line, larger distance between separate lines, etc. We are interested in a significantly more ambiguous problem where images combine alphabet and logographic characters from multiple languages and typographic rules vary a lot (e.g. English, Korean, and Chinese). Complexity of detecting and classifying text lines in multiple languages calls for a more principled approach based on information- theoretic principles. Our new MDL model includes data costs combining geometric errors with classification likelihoods and a hierarchical sparsity term based on label costs. This energy model can be efficiently minimized by fusion moves. We demonstrate robustness of the proposed algorithm on a large new database of multilingual text images collected in the pub- lic transit system of Seoul

    Video Text Localization with an emphasis on Edge Features

    Full text link
    The text detection and localization plays a major role in video analysis and understanding. The scene text embedded in video consist of high-level semantics and hence contributes significantly to visual content analysis and retrieval. This paper proposes a novel method to robustly localize the texts in natural scene images and videos based on sobel edge emphasizing approach. The input image is preprocessed and edge emphasis is done to detect the text clusters. Further, a set of rules have been devised using morphological operators for false positive elimination and connected component analysis is performed to detect the text regions and hence text localization is performed. The experimental results obtained on publicly available standard datasets illustrate that the proposed method can detect and localize the texts of various sizes, fonts and colors.Comment: 8 pages, Eighth International Conference on Image and Signal Processing, Elsevier Publications, ISBN: 9789351072522, pp: 324-330, held at UVCE, Bangalore in July 2014. arXiv admin note: text overlap with arXiv:1502.0391

    Accurate Scene Text Detection through Border Semantics Awareness and Bootstrapping

    Full text link
    This paper presents a scene text detection technique that exploits bootstrapping and text border semantics for accurate localization of texts in scenes. A novel bootstrapping technique is designed which samples multiple 'subsections' of a word or text line and accordingly relieves the constraint of limited training data effectively. At the same time, the repeated sampling of text 'subsections' improves the consistency of the predicted text feature maps which is critical in predicting a single complete instead of multiple broken boxes for long words or text lines. In addition, a semantics-aware text border detection technique is designed which produces four types of text border segments for each scene text. With semantics-aware text borders, scene texts can be localized more accurately by regressing text pixels around the ends of words or text lines instead of all text pixels which often leads to inaccurate localization while dealing with long words or text lines. Extensive experiments demonstrate the effectiveness of the proposed techniques, and superior performance is obtained over several public datasets, e. g. 80.1 f-score for the MSRA-TD500, 67.1 f-score for the ICDAR2017-RCTW, etc.Comment: 14 pages, 8 figures, accepted by ECCV 201

    Overlay Text Extraction From TV News Broadcast

    Full text link
    The text data present in overlaid bands convey brief descriptions of news events in broadcast videos. The process of text extraction becomes challenging as overlay text is presented in widely varying formats and often with animation effects. We note that existing edge density based methods are well suited for our application on account of their simplicity and speed of operation. However, these methods are sensitive to thresholds and have high false positive rates. In this paper, we present a contrast enhancement based preprocessing stage for overlay text detection and a parameter free edge density based scheme for efficient text band detection. The second contribution of this paper is a novel approach for multiple text region tracking with a formal identification of all possible detection failure cases. The tracking stage enables us to establish the temporal presence of text bands and their linking over time. The third contribution is the adoption of Tesseract OCR for the specific task of overlay text recognition using web news articles. The proposed approach is tested and found superior on news videos acquired from three Indian English television news channels along with benchmark datasets.Comment: Published in INDICON 201

    From Images to Sentences through Scene Description Graphs using Commonsense Reasoning and Knowledge

    Full text link
    In this paper we propose the construction of linguistic descriptions of images. This is achieved through the extraction of scene description graphs (SDGs) from visual scenes using an automatically constructed knowledge base. SDGs are constructed using both vision and reasoning. Specifically, commonsense reasoning is applied on (a) detections obtained from existing perception methods on given images, (b) a "commonsense" knowledge base constructed using natural language processing of image annotations and (c) lexical ontological knowledge from resources such as WordNet. Amazon Mechanical Turk(AMT)-based evaluations on Flickr8k, Flickr30k and MS-COCO datasets show that in most cases, sentences auto-constructed from SDGs obtained by our method give a more relevant and thorough description of an image than a recent state-of-the-art image caption based approach. Our Image-Sentence Alignment Evaluation results are also comparable to that of the recent state-of-the art approaches

    A Fast Hierarchical Method for Multi-script and Arbitrary Oriented Scene Text Extraction

    Full text link
    Typography and layout lead to the hierarchical organisation of text in words, text lines, paragraphs. This inherent structure is a key property of text in any script and language, which has nonetheless been minimally leveraged by existing text detection methods. This paper addresses the problem of text segmentation in natural scenes from a hierarchical perspective. Contrary to existing methods, we make explicit use of text structure, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypotheses with high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Results obtained over four standard datasets, covering text in variable orientations and different languages, demonstrate that our algorithm, while being trained in a single mixed dataset, outperforms state of the art methods in unconstrained scenarios.Comment: Manuscript Preprint. 11 pages. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Neural Motifs: Scene Graph Parsing with Global Context

    Full text link
    We investigate the problem of producing structured graph representations of visual scenes. Our work analyzes the role of motifs: regularly appearing substructures in scene graphs. We present new quantitative insights on such repeated structures in the Visual Genome dataset. Our analysis shows that object labels are highly predictive of relation labels but not vice-versa. We also find that there are recurring patterns even in larger subgraphs: more than 50% of graphs contain motifs involving at least two relations. Our analysis motivates a new baseline: given object detections, predict the most frequent relation between object pairs with the given labels, as seen in the training set. This baseline improves on the previous state-of-the-art by an average of 3.6% relative improvement across evaluation settings. We then introduce Stacked Motif Networks, a new architecture designed to capture higher order motifs in scene graphs that further improves over our strong baseline by an average 7.1% relative gain. Our code is available at github.com/rowanz/neural-motifs.Comment: CVPR 2018 camera read
    • …
    corecore